Optimal Parameter Selection in Support

Vector Machines!

K. Schittkowski?

Abstract

The purpose of the paper is to apply a nonlinear programming algorithm to com-
pute kernel and related parameters of a support vector machine (SVM) by a two-level
approach. Available training data are split into two groups, one set for formulating a
quadratic SVM with Lg-soft margin and another one for minimizing the generalization
error, where the optimal SVM variables are inserted. Subsequently, the SVM is again
solved, but now for the entire set of training data, and the total generalization error
is evaluated for a separate set of test data. Derivatives of the functions by which the
optimization problem is defined, are evaluated in an analytical way, where an exist-
ing Cholesky decomposition needed for solving the quadratic SVM, is exploited. The
approach is implemented and tested on a couple of standard data sets with up to
4,800 patterns. The results show a significant reduction of the generalization error,
an increase of the margin, and a reduction of the number of support vectors in all
cases where the data sets are sufficiently large. By a second set of test runs, kernel
parameters are assigned to individual features. Redundant attributes are identified
and suitable relative weighting factors are computed.

Keywords: machine learning; support vector machine; SVM; Gaussian kernel; kernel param-
eter; sequential quadratic programming; SQP; nonlinear programming;

!Sponsored by EU Network of Excellence PASCAL (Pattern Analysis, Statistical Modelling and Compu-
tational Learning) under contract no IST 2002-506778
2Department of Computer Science, University of Bayreuth, 95440 Bayreuth, Germany

1 Introduction

During the last ten years, support vector machines (SVM) became an important alternative
to neural networks for machine learning. Meanwhile there is a large number of applications,
see e.g.

http://www.kernel-machines.org/

Especially from the viewpoint of mathematical programming, SVMs are extremely inter-
esting and touch a large variety of important topics, for example duality theory, convex
optimization, large scale linear and quadratic optimization, semi-definite optimization, least
squares optimization, Li-optimization, and interior point methods. In a series of papers,
Mangasarian and co-workers investigate support vector machines from the viewpoint of
mathematical programming, see Bradley et al. [3], Fung and Mangasarian [9], Mangasar-
ian and Musicant [11], and Mangasarian [12, 13].

As shown below in more detail, a support vector machine is identified by a kernel function
to determine a certain similarity measure, a method compute a classification error, and an
approach to handle outliers. Although being a well established technique, it is still difficult
to find a suitable kernel function and especially to predetermine numerical parameter values
in a specific situation. An alternative to statistical methods is to be presented in this paper
based on a mathematical optimization model.

We proceed from a set of n training data (x;,y;), i = 1, ..., n, where x; € R™ represent
certain patterns with m attributes, and y; € {—1,1} are labels. Only binary classification
of the data xy, ..., z, is considered, i.e., we are looking for a separating hyperplane

h(z) == w'z — v (1)
with
min w’w + 127z
wGRm,’VER,ZERn : Y(XTw_fye>Z€_Z , (2)
z>0,
where X = (x1,...,x,) and where Y is a diagonal matrix containing the labels y1, ..., yn,
and e = (1,...,1)T. 2z is a vector of slack variables introduced for the case that the data are

not completely separable, also called the soft margin. To reduce the influence of the slack
variables as much as possible related to the overall goal to maximize the margin, a weight
v > 0 is introduced. If z = 0, the data are strictly separable and the objective function is
identical to w”w, by which the margin is maximized, see Christianini and Shawe-Taylor [0]
or Shawe-Taylor and Christianini [18].

It is easy to see that the dual program of (2) is given by

min § of(YXTXY 4+ vi)a — e
OéG:[R,n:yTOézo7 <3>
a>0 .

Here, I denotes the n by n unit matrix and y := (y1,...,y.)" is a vector containing the
labels. The advantage is that the slack variables of the primal formulation with a soft margin
vanish completely. « denotes the dual variables and the bias v is the multiplier of the equality
constraint in (3) as will be discussed later in more detail.

The next step is to consider the matrix X7 X with coefficients =} z;, i,j =1, ..., n. To
allow a more flexible nonlinear separation, R" is mapped into the so-called feature space F'
by a function ¢ : R" — F. F'is a generally unknown Hilbert space with inner product (., .).
The idea is to separate the data linearly in the feature space F', as outlined above. The only
change of (3) consists of replacing the inner products z7 z; by their mapped inner products
(o(z4), ¢(z5)), 1,5 = 1, ..., n. Since, however, F' is unknown, so-called kernel trick consists
of defining a function

k(z,z,p) == (o(x), (7)) (4)
and to replace x] z; in (3) by k(z;,x;,p), where k(z,T,p) is a suitable kernel function de-
pending on two given data vectors x,7 € R™, by which a certain distance or similarity
between x and T is to be measured. Moreover, the kernel function depends on a parameter
vector p € R".

A typical and widely used kernel function is the Gaussian or RBF kernel

k(z,7,p) = exp(—pllz —7*) ()

where the distance is measured in the Ly-norm. In this case, we have n, = 1. Under certain
assumptions on k(z, T, p), the existence of a feature mapping ¢ satisfying (4) can be shown,
see Christianini and Shawe-Taylor [0].

For any two data sets {xy,...,2,} and {Zy,...,%x}, we denote by X and X the corre-
sponding matrices X = (z1,...,2,) and X = (Zy,...,Tn). The kernel matrix of the two
data sets is then defined by

K(X,X,p) = (k(xivfﬁp))i:Ln,j:Lﬁ : (6)

Note that K(X,X,p) is an n by W matrix depending on a parameter vector p € R™. In

case of X = X we also assume throughout this paper that K (X, X,p) € R™" is positive
definite for all p € R".

Thus, we finally obtain the standard quadratic programming support vector machine
with Ls-soft margin

min 3 o (VK (X, X,p)Y +vi)a — e’
aceR": yTa=0 (7)
a>0 .

From a solution a(p,r) € R" of (3) depending on the parameter vector p and the weight v,
we immediately get the so-called geometric margin of the separating hyperplane

1= ("alp,v) - va(p,v) ap.v) " (8)

Note that the margin depends also on the weight factor v which must be selected in an
appropriate way. It is easy to see that the bias v of the linear hyperplane (1) in the feature
space it the multiplier corresponding to the equality constraint y”« = 0, now denoted by

v(p,v).
To evaluate the training accuracy, it is assumed that a second set of test data is given,
(xt,yh), i =1, ..., ny, from where the expression
f@t vt p,v) = yi(K (o, X, p)Yalp, v) —v(p,v)) (9)
for i =1, ..., n; leads to the training or generalization error
1 .
e(Xthytvpa V) = n_ (nt - Hf(a‘ivy;pa V) : f(Ifayf7p7 V) > 072 -]-7 s 7nt}|) . (1())
t

Here, |{...}| denotes the cardinality of a set, X := (x},...,2!) and y' := (y%,...,9%)T, and
we define

fXyh pov) = (f(ah,ylpv), .o fadh yt o))"

In a real life situation, it is sometimes difficult to find a suitable parameter p and a
weight v. Statistical analysis, e.g., a principal component analysis as proposed by Debnath
and Takahashi [3], factorial design or similar techniques, see Cherkassy and Ma [5] or Anguita
et al. [1], often lead to the necessity to solve a large number of quadratic programs of the
form (3), especially if the number of parameters, n,, becomes large. A typical situation is,
for example, the assignment of one parameter of the RBF kernel to each attribute. Formal
optimization approaches are found in Ayat, Cheriet, and Suen [2] and in Chapelle et al. [4].
In the latter paper, also alternative cost functions are discussed based on leave-one-out
bounds.

Section 2 contains a brief outline of the underlying strategy how to formulate an opti-
mization problem which can solved by a gradient-based nonlinear programming algorithm.
For the numerical tests of this paper, we choose the sequential quadratic programming (SQP)
algorithm NLPQLP20 of Schittkowski [17]. The calculation of analytical gradients of the
solution of a quadratic programming subproblem is crucial for the efficiency of any gradient-
based code. It is shown how they are evaluated and how an existing decomposition of a part
of the kernel matrix can be exploited.

To illustrate the computational performance, some numerical test results are summarized
in Section 2 based on a few small size standard data sets and the Gaussian kernel (5).
Optimization variables are the kernel parameter p and the weight v of the Lo-soft margin,
see (7). A more interesting question is whether the same idea is applicable also to the case
where an individual kernel parameter is assigned to each feature of our experiment. By a
further set of test runs, we show some results where the conclusions are very similar and
depend on the size of the training data.

2 Optimal Selection of Kernel Parameters

The idea is to split the available training data into two subsets. The first one is of size n and
is denoted by a matrix X and a diagonal label matrix Y or a label vector y, respectively.

Both are used to compute the dual variables a(p, v) and the multiplier y(p, v) of the equality
constraint from (7). Then there is another set of size ny, (zf,y!), i =1, ..., n;, which is used
to simulate the error of the training data.

The optimization problem consists of minimizing this error in the Li;-norm over all pa-
rameters p and all positive weights v, i.e.,

P c Rnp ve R . min 2?21 |f(xfayf7p7 V)7| (11)
7 p<p<p.,, v>=0,

where an evaluation of the objective function requires the solution of the implicitly given
quadratic program (7). The upper index ’-’ defines the violation of the separation condition,

i.e., a= :=min{0,a}, and p;, p, are suitable bounds for the kernel parameters.
However, (11) is non-differentiable and the standard trick is to introduce slack variables
z=(z1,...,2n,)7 to get the equivalent smooth optimization problem
min elz
zeR",peR™” veR : f(X'y,pv)+2>0, (12)

nm<p<p,, z=20, v=>0.

To apply an efficient gradient-based optimization method, we have to be able to compute
derivatives of the constraint functions f(X* 4 p,v) subject to the parameter p and the
weight v. Since this function implicitly depends of the solution of the quadratic programm
(7), we have to analyze first the question, how to get derivatives of the solution «(p,r) and
the multiplier of the equality constraint y”a = 0, i.e., v(p,).

To simplify the notation, we consider first a quadratic program of the form

min § a’A(z) a — '
aceR": yla=0 (13)
a>0
with ¥ = (y1,...,y,)7 € R™ and a positive definite matrix A(z) depending on a scalar

parameter € R. It is assumed that A(z) is continuously differentiable subject to z. From
the corresponding Lagrangian function

1
L(a,v,u) = 5 o"Ax)a —ela—yyfa—ula

with a scalar multiplier v for the equality constraint and a multiplier vector u € R" for the
bounds we obtain the Karush-Kuhn-Tucker (KKT) optimality conditions
Alz)a—e—yy—u=0 |,
y'a=0,
w'a=0, (14)
a>0,

u>0 .

It is furthermore assumed that the quadratic program (13) is not degenerate in the sense
that (13) satisfies the constraint qualification and the strict complementary condition for all
parameter values x. Both conditions are for example violated if y = e. Then a =0, v = —1,
and u = 0 solve (14) and we get a degenerate stationary point.

Under these assumptions, we know that the multipliers v and u are unique and that we
can perform the subsequent perturbation analysis leading to the derivatives we are looking
for. We choose a sufficiently small € > 0 and replace A(z) by A(z.) in (13) with z. := x +e.
The Karush-Kuhn-Tucker conditions of the perturbed problem are

Alz) ae—e—vy—u.=0

yTa.=0,

uETozez(), (15)
a >0,

u. >0 .

Let «, 7, and u be a solution of (14) with a; > 0 if and only if ¢ € I, I C {1,...,n},
a = (ai,...,a,)T. Since a solution ar, v, and u. of (15) depends continuously on ¢, we
can choose an e sufficiently small so that also af > 0 for all 1 € I, o, = (af,...,a5)T.
The strict complementary assumption guarantees that u; = 0 and u§ = 0 for all j € J,
J:={1,...,n} = I, where u = (uy,...,u,)" and u. = (ug,...,u)". On the other hand, we
also have o; = 0 and u; > 0 for all 7 € J. By further reduction of e, if necessary, we get
u$ > 0 for all j € J and thus also a5 = 0 for all j € J.

We conclude that the sets of active bounds of (14) and (15) are identical, moreover that

the corresponding derivatives are zero, i.e.,

0 0
%ui:OforalliEI, a—x&j:OforalleJ. (16)

Now we suppose that we know the active set of the bound constraints for « which is
identical to the active set of the perturbed problem for a sufficiently small €. Let A(x) be
the matrix A(z) obtained by deleting all rows and columns not belonging to I, and At (z.)
the corresponding perturbed matrix. By deleting now the same coefficients in y, we obtain
y1. Then the Karush-Kuhn-Tucker conditions (14) and (15) are

Ar(r)ar —e—7vy1 =0,
17
yror =0, an
and
A1(z) a1 —e—7yp =0,

18
yr'a =0 .)

By combining both equations, we get

Ar(ze) acr — Ar(z) ap = (Ar(z) — A1(2)) aer + Az(2) (e — a1)

(19)
= (=71
or, after dividing by ¢ and going to the limit ¢ — 0,
0 0 0

Ag(e) 5oo1(r) = 5-2(@) v — 5-A1(e) ax(a) - (20)

Here we introduce again the argument = for the KKT point a1 and 7).

In addition, we have the identity

y1'ar(z) =y1 ag(e) =0, (21)

which is valid for all solutions of the perturbed problem (15). We conclude that in the limit

0
?JITaaI(x) =0, (22)

Since A1 (z) is positive definite and since therefore 2ot () can be eliminated from (20), we
get the derivative of the multiplier v(x) from

0

0
—(x) = TAg(z)
ax’v() ALy 1(2)

S Ar(@) a1(e) . (23)

The same investigation can be performed for each parameter of A for which we want to
compute the first partial derivatives.

Next, we consider again the support vector machine (7). We assume that the kernel
matrix depends on a parameter vector p € R"?. By successively replacing x in A(zx) in (13)
by pi, 1 =1, ..., ny, and v, we get the subsequent theorem.

Theorem 2.1 Assume that the quadratic support vector machine (7) with La-soft margin is
given, where the kernel function K (X, X, p) depends smoothly on a parameter vectorp € R"™.
Then the partial derivatives of the solution a(p,v) and of the multiplier ~(p,v) of the support

vector machine (7) subject to the equality constraint y'a =0 are computed from

0 0
apia.r(p, v) = Ar(p,v)! (apﬂ(p’ V) yr—

0
o, YK (X, X,p)Y1 az(p, V)) :

aiiaj(p7y) = 07

P 1 . L0
U = Azr(p,v YK X, X,p)Y7) ar(p,v) ,
Gpﬂ(p) v AT) Tyg VT 1, v) api(K 1(p)Yr) arpv)

a%@r(pw = Az(p,v)™! (%W(W)M-%(PW)) ,

0
%O‘J(QV) =0)

0 1 e _1
—(p,v = Ar(p,v) arlp,v
aﬂ(p) v AT) Tyg VT 1p,v) ar(p,v)

fori=1,...,n,, where Jis the set of all active bounds of (7), I:={1,...,n}—J and where
Alp,v) = YK(X, X,p)Y +vi. Ar(p,v), K1(X,X,p), and Y1 denote the submatrices of
A(p,v), K(X,X,p), and Y, respectively, obtained by deleting all rows and columns belonging
toJ. ar, yrand oy, , y g are subvectors of a and y, respectively, containing only coefficients
belonging to I and J.

The previous theorem enables us to compute the derivatives of the restrictions in our
relaxed optimization problem (12), see also (11), subject to p and v. The additional partial
derivatives with respect to z are easily obtained. From (9) we obtain

0 tot _ t i t t i
apif(‘rhyiapuV) - yz((apZK(xqu7p)Ya(pay)+K(‘rz7X7p>Ya ia(pvy)>
0
24
op, 1) (24)

2 t ot _ ot t g _2
S fahylpy) = YKL X p)Y o) = 53 (p)

for i = 1,...,n,. After inserting the partial derivatives obtained from Theorem 2.1, we get
the derivatives as required by the optimization algorithm.

Finally, we choose a third set of n, data with known labels, (z§,yf), i =1, ..., n., which
is used to evaluate the error function e(X€, y¢, p*, v*), see (10), for an optimal parameter
vector p* € R" with corresponding multiplier v*. Here we have X¢ := (xf,..., 2) and
y¢ = (v5,...,y5)", Since the evaluation data (X, y¢) must be different from the training
data (X,y) and the test data (X', ") by which the error of the training data is measured,
we get a performance criterion which is independent from the data by which the optimal

parameter set is computed.

3 Implementation and Numerical Tests

Each step of the proposed approach requires the solution of a strictly convex quadratic pro-
gram (7) with one equality constraint and lower bounds for the variables, which is solved by
the primal-dual method of Goldfarb and Idnani [10] based on numerically stable orthogonal
decompositions, see Powell [11]. The corresponding Fortran subroutine is called QL, see
Schittkowski [16]. Since an initial Cholesky decomposition can be computed in the calling
program and passed to the solver, we decompose A(p,r) in the form

A(p,v) =U(p,v)"U(p,v)

with an upper triangular matrix U(p, v). The particular advantage is that the same Cholesky
decomposition can be applied to compute the derivatives of the constraints of (12) by which
the generalization error is estimated. Since, however, rows and columns of active bounds are
deleted from A(p,v), the Cholesky decomposition must be reevaluated.

The nonlinear programming problem (12) is solved by the Fortran code NLPQLP, see
Schittkowski [15, 17]. In certain error cases, a non-monotone line search is applied by which
the stability is significantly improved, see Dai and Schittkowski [7]. Functions and gradients
must be provided by reverse communication and NLPQLP is executed with termination
accuracy ACC=10"12 for small size problems and ACC=10"° for the larger data sets. The
Fortran codes are compiled by the Intel Visual Fortran Compiler, Version 8.0, under Windows
XP, and executed on a Pentium IV processor with 2.8 GHz and 2 GB memory.

The intention of the numerical tests is to show the feasibility of our approach. 12 standard

data sets are selected, most of them from the UCI Machine Learning Repository
http://www.ics.uci.edu/ mlearn/MLRepository.html

Table 1 contains the name of the data set, the number of features m, the number of training
data n used to formulate and solve the SVM (7), the number of training data n; which are
used to formulate the error function in (12), and the number of independent test data n.
used to compare the classification error before and after solving (12). Proceeding from the
available data files, they are chosen according to the relation 1:2:1 besides of the toy problem
checkerb, for which data are randomly generated.

Unscaled data sets are scaled so that all data are between 0 and 1. Note that the bias ~
of the linear hyperplane (1) in the feature space corresponds to the multiplier corresponding
to the equality constraint y”a = 0, now denoted by v(p, v).

To evaluate the generalization error based on the entire set of training data, i.e., of n+n,,
we proceed from parameter values p and v, and solve (7) based now on all available training
data. We use the notation

v(3) () eey) e

and solve the extended quadratic program (7), i.e.,
min § o' (YK(X,X,p)Y +vl)a—ela
acR"™ : yTa=0, (26)
a>0 .

problem m n g Ne

sonar 60 26 52 26
tictacto 9 239 479 240
breacanc 9 71 143 72
banana 2 250 500 250
checkerb 2 200 200 200,000
heartdis 13 67 135 68
german 24 250 500 250
breawis 9 170 341 172
adulnew 123 401 802 402
aduZ2new 123 566 1,132 567
adudnew 123 796 1,592 797

adudnew 123 1,195 2,390 1,196

Table 1: Data Sets for Binary Classification

Let @(p,) be the optimal solution and 7(p,) be the corresponding multiplier of the equality
constraint. Proceeding from an independent set of n. test data, we compute the error
function

flag yspv) = yi (K(25, X, p) Y a(p,v) = 5(p, v)) (27)
fori =1, ..., n., see also (9), and in addition
e e 1 e e e e N
e(X » Y ,p,y) = n_(ne - ‘{f(xiayi7p7y) : f(xiayi7p7y> > 072 = 17"'7ne}|> 9 (28>

e

see (10).

Now we insert the optimal parameters (p*, v*) and also the initial values (pg,) by which
the optimization code is started, and use e¢* := e(p*,v*) and €° := e(p°, 1°) to evaluate the
generalization error before and after the optimization cycle.

The index set

Su(p,v) :={i:apv)>0,i=1,...,n+n} (29)

defines the support vectors of the SVM. Note that @(p, v) denotes the multiplier vector of a
corresponding primal problem in the feature space where mapped data are linearly separated,
see (2) and (3). Thus, S,(p,v) also identifies the primal variables active for the primal
problem in the feature space. Too many active primal variables can lead to overfitting, an
undesired effect caused for example by a too low number of training data. It is even possible,
that all available training data are perfectly separated with a maximized margin, but the
resulting test function leads to an insufficient separation of any other data. Thus, we report
also the percentage of support vectors before and after applying the optimization procedure,
denoted by

100

n -+ ny

Su(p, V) 1= 1Sy(p, V)|

for the optimal and the initial variables, s* := s,(p*, v*) and s := s,(p°, °).

10

An important effect of applying a support vector machine is to increase also the margin by
which the data are separated, see (2). Since we consider data sets which are not completely
separable, we allow violation of the separation condition and evaluate the margin by (8),
which depends now also on (p, v),

plpv) = (eTa(p, v) — va(p,v) a(p, I/))im

The displayed margin values are denoted by p* := u(p*,v*) and u° := u(p°, v°). Finally, we
report also the optimal parameters v* and p* for the case n, = 1, and the total number of
iterations of the optimization algorithm, n;.

For our numerical tests, we use the Gaussian or RBF kernel (5),

k(z,T,p) = exp(—p|lz — Z||°) .

First, we apply this kernel to all features with one common parameter p and n, = 1. The
initial value for p is set to one, i.e., py = 1, if data are not scaled, and to py = 1/m otherwise.
The second optimization parameter, the weight factor v, is initially set to v = 0.001. Results
are summarized in Table 2.

No improvement of the generalization error is observed for sonar, the smallest data sets
with only 104 available patterns. Some other small data sets, breacanc, banana, heartdis,
and german, seem to be overfitted. In all other cases, we observe a significant reduction
of the generalization error and the number of support vectors. Moreover, the margin is
increased in most cases. The number of iterations roughly corresponds to the number of
SVMs to be solved until an optimal parameter p* and and an optimal weight v* are reached.
The large number if iterations in some cases, e.g., banana, heartdis, adu2new, adu3new, and
adu4new, indicates that the optimization process is not very stable. Possible reasons are
numerical instabilities during the solution of (7), too many local minima, very flat surfaces
of the objective function, or non-unique solutions. Even a violation of the assumptions under
which the differentiability of a KKT point of the SVM (7) is shown, is possible.

Now we apply one individual kernel parameter to each feature to have the possibil-
ity to weight the attributes and to select redundant ones. If z = (zy,...,2,,)" and T =
(T1,...,Tm)T are two feature vectors and p = (pi,...,pm)" a vector of m kernel parameters,
we now define an extended kernel function by

k(v,7,p) = exp (— Zilpz-(:ri - @)2> , (30)

see also (5). Instead of one kernel parameter, we list the mean value p* and in addition the
number of parameters which approach the lower bound zero, n,., see Table 3. This figure
is an indication whether there are redundant features or not. In this case, the number of
optimization variables of the nonlinear programming problem (12) increases by the number
of features m minus one.

In general, the number of iterations is much higher compared to the one-parameter
situation. Similar to the results of Table 2, we do not observe significant improvement of

11

problem e* eV sk s wr u° v* p* Nt
sonar 23.08 23.08 100 91 0.1845 0.1037 0.55 0.13-10T1 21
tictacto 0.83 14.58 53 99 0.0056 0.0437 0.14-10"2 0.13-10"! 101
breacanc 20.83 36.11 100 78 0.7483 0.0094 0.68-10T! 0.94 78
banana 12.00 12.80 94 35 0.3380 0.0152 0.11-10™2 0.17-10t! 318
checkerb 5.95 6.72 8 7 0.0030 0.0014 0.00 0.15-102 57
heartdis ~ 5.88 13.24 97 51 0.4102 0.0086 0.31-10t! 0.13 134
german 27.20 35.20 91 100 0.0767 0.5496 0.13 0.21-10" 50
breawis 407 465 39 19 0.0011 0.0217 0.20-107* 0.11-107% 66
adulnew 17.91 25.62 77 100 0.0805 0.0347 0.34 0.19-1072 41

adu2new 18.34 25.04 77 100 0.2130 0.0294 0.35-10T* 0.21-10"% 122
adudnew 15.93 24.87 76 99 0.2054 0.0256 0.39-10t! 0.16-10"! 137
adudnew 18.73 25.77 73 99 0.1762 0.0213 0.41-10T' 0.13-107' 209

Table 2: Performance Results for One Kernel Parameter

the performance index for the small sized data set sonar. The generalization error e* and
the margin p* are not improved significantly, but the average number of support vectors is
reduced in most cases. The results for the four data sets adulnew to adujnew are somewhat
different from the others. There are nearly no improvements of our performance criteria, but
we observe at least a much larger relative number of redundant attributes. Again, the slow
convergence is an indication of numerical instabilities either in the numerical algorithm, the
calculation of gradients, or the data.

It is interesting to see that the number of iterations, n;, is not related to the dimension
of the optimization problem (12) which consists of up to n, +m + 1 = 2,514 variables and
n; = 1,195 constraints for adu4new. In this case, a quadratic programming subproblem of
size n = 1,195 must be solved in each iteration for evaluating the constraint function values
and their derivatives. Moreover, the applied sequential quadratic programming algorithm
requires the internal solution of another quadratic program of the same size as the nonlinear
program to compute a search direction. Both are solved by the code QL of Schittkowski [10],
see also the initial comments of this section. To call the SQP code NLPQLP, we need internal
working space of more than 2.5(n; +m + 1)>+ (n; +m + 1)n; &~ 2- 107 double precision real
variables. The quadratic program 26) by which the generalization error is computed, has up
to n + n; = 3,585 variables, and is again solved by the dense algorithm QL.

4 Conclusions

We present an approach to predetermine optimal kernel and weighting parameters of a
support vector machine. A nonlinear programming algorithm is applied to an optimization
problem, by which the generalization error of one part of the training data is minimized over
solutions of a quadratic SVM subject to another subset of the training data. We consider
binary classification subject to the classical SVM with soft margin and penalization in the

12

problem er el sy Y we 10 v* * N, Ni
sonar 23.08 23.08 100 91 0.2165 0.1037 0.78 0.10 - 10+t 2 90
tictacto 0.83 14.58 34 99 0.0002 0.0437 0.18-107° 0.28-102 0 402
breacanc 18.06 36.11 94 78 0.3562 0.0094 0.15-10"1 0.86-10*! 1 324
banana 11.20 12.80 39 35 0.0275 0.0152 0.31-10"2 0.69 0 85
checkerb 6.14 6.72 9 7 0.0027 0.0014 0.00 0.14 - 1072 0 52
heartdis 10.29 13.24 80 51 0.0277 0.0086 0.74-1072 0.90-10"' 6 284
german 26.80 35.20 90 100 0.0046 0.5496 0.27-1073 0.95-10"1 4 211
breawis 3.49 4.65 53 19 0.0453 0.0217 0.66-10~! 0.18 2 66
adulnew 19.90 25.62 77 100 0.1219 0.0347 0.13-10T' 0.58 40 410
adu2new 19.93 25.04 77 100 0.1827 0.0294 0.31-10t! 0.44 36 500
adudnew 17.44 24.87 78 99 0.2186 0.0256 0.61-101Y 0.42 59 387
adudnew 18.81 25.77 75 99 0.1658 0.0213 0.57-10Ft! 0.44 33 288

Table 3: Performance Results for m Kernel Parameters

Lo-norm, but the idea is easily transferred to related models, e.g., penalization in the Li-
norm. Also the Gaussian kernel used throughout the paper, can be replaced by any other
kernel function or even a combination of different kernels.

Since the test data by which the overall efficiency of the SVM is measured, are in-
dependent from the training data, we are able to evaluate the accuracy before and after
optimization. If the number of training data is not to small, a significant reduction of the
generalization error is observed. Also the number of support vectors is decreased and the
margin is increased.

However, the achievements depend on the choice of the initial parameters by which
the SQP algorithm is started, and must be interpreted very carefully. They represent the
improvement when little or no information is available about a suitable choice of kernel
parameters. Another difficulty is that the applied gradient-based optimization algorithm is
only able to approximate a local solution, and we do no know whether better local minima
exist. Since, however, a significant error reduction is obtained at least if the number of
training data is not too small, and since the number of solutions of quadratic SVMs is
reasonably small, the optimization approach seems to have some advantages over statistical
methods, especially in case of many kernel parameters.

Especially in case of many kernel parameters, obtained for example by assigning individ-
ual weights to attributes, we observe slow convergence. Further investigations are necessary
to understand this situation in more detail and to find out where the numerical instability
comes from.

Each evaluation of the constraints of our optimization problem requires the full solution
of a quadratic programming (QP) subproblem. Although the Cholesky decomposition can be
exploited for computing analytical derivatives efficiently, more research efforts are required to
handle very large training sets either by replacing the dense QP solver by an iterative method
for large scale quadratic programs or by applying a large scale optimization routine directly
to the full problem, where also the dual variables of the SVM are treated as optimization
variables and where the optimality conditions of the QP lead to nonlinear constraints.

13

5

Acknowledgements

The author acknowledges the financial support provided by the EU Network of Excellence
PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning).

References

1]

[11]

[12]

Anguita D., Boni A., Ridella S., Rivieccio F., Sterpi D. (2005): Theoretical and practical
model selection methods for support vector classifiers, in: Support Vector Machines:
Theory and Applications, L. Wang ed.

Ayat N.E., Cheriet M., Suen C.Y. (2002): Empirical error based optimization of SVM
kernels: Application to digit image recognition, Proceedings of the International Work-
shop on Frontiers in Handwriting Recognition, 2002, Niagara, Canada, IEEE Computer
Society

Bradley P.S., Fayyad U.M., Mangasarian O.L. (1999): Mathematical programming for
data mining: Formulations and challenges, INFORMS Journal on Computing, Vol. 11,
217-238

Chapelle O., Vapnik V., Bousquet O., Mukhherjee S. (2002): Choosing multiple param-
eters for support vector machines, Machine Learning, Vol. 46, No. 1, 131-159

Cherkassy V., Ma Y. (2004): Practical selection of SVM parameters and noise estima-
tion for SVM regression, Neural Networks, Vol. 17, No. 1, 113-26

Christianini N., Shawe-Taylor J. (2000): An Introduction to Support Vector Machines,
Cambridge University Press

Dai Y.H., Schittkowski K. (2005):A sequential quadratic programming algorithm with
non-monotone line search, submitted for publication

Debnath R., Takahashi H. (2004): Analyzing the bahavior of distribution of data in the
feature space of SVM with Gaussian kernel, Neural Information Processing - Letters
and Reviews, Vol. 5, No. 3, 41-48

Fung G, Mangasarian O.L. (2004): A feature selection Newton method for support vector
machine classification, Computational Optimization and Applications, Vol. 28, 185-202

Goldfarb D., Idnani A. (1983): A numerically stable method for solving strictly convex
quadratic programs, Mathematical Programming, Vol. 27, 1-33

Mangasarian O.L., Musicant D.R.. (2001): Lagrangian support vector machines, Journal
of Machine Learning Research, Vol. 1, 161-177

Mangasarian O.L. (2002): A finite Newton method for classification, Optimization
Methods and Software, Vol. 17, 913-929

14

[13]

[14]

[15]

[16]

Mangasarian O.L. (2003): Data mining via support vector machines, in: System Mod-
eling and Optimization XX, E.W. Sachs, R. Tichatschke eds., Kluwer Academic Pub-
lishers, Boston 2003, 91-112

Powell M.J.D. (1983): On the quadratic programming algorithm of Goldfarb and Idnani.
Report DAMTP 1983/Na 19, University of Cambridge, Cambridge

Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained nonlinear
programming problems, Annals of Operations Research, Vol. 5, 485-500

Schittkowski K. (2003): QL: A Fortran code for conver quadratic programming-User’s
guide, Report, Department of Mathematics, University of Bayreuth

Schittkowski K. (2004): NLPQLP20: A Fortran implementation of a sequential
quadratic programming algorithm with distributed and non-monotone line search-User’s
guide, Report, Department of Mathematics, University of Bayreuth

Shawe-Taylor J., Christianini N. (2004): Kernel Methods for Pattern Anaysis, Cam-
bridge University Press

15

	Introduction
	Optimal Selection of Kernel Parameters
	Implementation and Numerical Tests
	Conclusions
	Acknowledgements

