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Abstract. Sequential convex programming methods became very popular in
the past for special domains of application, e.g. the optimal structural design in
mechanical engineering. The algorithm uses an inverse approximation of certain
variables so that a convex, separable nonlinear programming problem must be
solved in each iteration. In this paper the method is outlined and it is shown,
how the iteration process can be stabilized by a line search. The convergence
results are presented for a special variant called method of moving asymptotes.
The algorithm was implemented in FORTRAN and the numerical performance
is evaluated by a comparative study, where the test problems are formulated
through a finite element analysis.
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1 Introduction

In this paper we proceed from the general formulation of a nonlinear program-
ming problem

minh0(x)

x ∈ IRn : hj(x) ≤ 0 , j = 1, ...,m (1)

xl ≤ x ≤ xu

where all problem functions are continuously differentiable. We may imagine,
for example, that the objective function describes the weight of a structure that
is to be minimized subject to sizing variables, and that the constraints impose
limitations on structural response quantities, e.g. upper bounds for stresses or
displacements under static loads. Many other objectives or constraints can be
modelled in a way so that they fit into the above general frame.

Especially in design optimization for mechanical engineering, sequential con-
vex programming (SCP) algorithms as developed by Fleury (1989), Svanberg
(1987) and others became very popular for several reasons:
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1. The mathematical formulation of certain types of constraints, in particular
of stress constraints, contains inverse optimization variables e.g. in case
of cross-sections of bars. Thus an inverse approximation of these variables
linearizes the problem functions defining the restrictions.

2. SCP methods are first order methods, which are attractive in situations,
where round-off errors prevent the precise evaluation of gradients, and are
therefore unable to update any second order information in a sufficiently
accurate manner.

3. SCP methods are able to solve large optimization problems with hundreds
or even thousands of variables, since the convex and separable subproblem
to be solved in each iteration, can be adapted to large scale optimization
and is solved easily also in these situations.

As a result of these observations, the finite element analysis of very many
structural design software systems was extended by optimization modules based
on convex approximation methods, see e.g. Hörnlein and Schittkowski (1992) for
a review. Practical experience shows that SCP methods are often much more
efficient than other methods, e.g. sequential quadratic programming, feasible
direction or generalized reduced gradient methods.

However the typical implemetation of an SCP methods has a severe draw-
back: The methods are not stabilized in the sense that convergence towards a
solution from an arbitray initial design, is not guaranteed. In Zillober (1993a),
a stabilization by a line search procedure was proposed which allows to prove
global convergence theorems. The main results are repeated in this paper.

Moreover we summarize the results of an extensive comparative study of
structural optimization codes, where the analysis is based on a finite element for-
mulation and performed by the software systemMBB-LAGRANGE, see Kneppe,
Krammer, and Winkler (1987) or Zotemantel (1993). Besides of the nine opti-
mization algorithms included in the official version, two additional methods are
added to the system, i.e. certain variants of convex approximation methods.
The codes represent all major classes of algorithms that are in practical use at
present.

To conduct the numerical tests, 79 design problems have been collected.
Most of them are academic ones, i.e. are more or less simple design problems
found in the literature. The remaining ones possess some practical real life
background from project work or are suitable modifications to act as benchmark
test problems for the development of the software system. In all situations,
we minimize the weight of a structure subject to displacement, stress, strain,
buckling, dynamic and other constraints. Design variables are sizing variables,
e.g. cross sectional areas and thicknesses of skeletal as well as membran or shell
structures.

In the following section we will describe some convex approximations used
for SCP methods. The optimization algorithm is outlined in Section 3 together
with some convergence results. Section 4 contains a summary of computational
results which allow a direct comparison with other methods.
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2 Convex Approximations

By using reciprocal variables, Fleury and Braibant (1986) developed an opti-
mization method called CONLIN (convex linearization). An approximation of a
function is defined by separate linearization for each variable depending on the
sign of the partial derivative at the expansion point. If the sign is positive then
the linearization is performed with respect to the original variable. Otherwise
the approximation is obtained with respect to the inverse variable, leading to a
convex approximation of the original function.

In a more formal notation, we replace the original problem functions hj(x),
j = 0, . . . ,m, with respect to a given iterate xk ∈ IRn by

hj(x) := hj(xk) +
∑
i∈I+

j,k

∂

∂xi
hj(xk)(xi − xki )−

∑
i∈I−

j,k

∂

∂xi
hj(xk)(x

k
i /xi − xki ) (2)

where x = (x1, ..., xn)
T and xk = (xk1 , ..., x

k
n)

T and where

I−j,k := {i : 1 ≤ i ≤ n,
∂

∂xi
hj(xk) ≤ 0}

I+j,k := {i : 1 ≤ i ≤ n,
∂

∂xi
hj(xk) > 0}

for j = 0, . . . , m, and where hj(x) is defined for all x > 0.
The reason for inverting design variables in the above way is, that e.g. in

design optimization stresses and displacements are exact linear functions of the
reciprocal linear homogeneous sizing variables in case of a statically determinated
structure. Moreover the numerical experience shows that also in other cases,
convex linearization is applied quite successfully in practice, in particular in
shape optimization, although a mathematical motivation cannot be given in
this case.

After some reorganization of constant data, we get a convex and separable
subproblem of the following form:

min
∑

i∈I+
0,k
ci0,kxi −

∑
i∈I−

0,k
ci0,k/xi

x ∈ IRn :
∑

i∈I+
j,k
cij,kxi −

∑
i∈I−

j,k
cij,k/xi + cij,k ≤ 0, j = 1, ...,m (3)

xl ≤ x ≤ xu

where cij,k and cij,k are the constant parameters of the convex approximation
with respect to objective function and constraints, i.e. are defined by

hj(x) := cij,k +
∑
i∈I+

j,k

cij,kxi −
∑
i∈I−

j,k

cij,k/xi

for j = 0, . . . ,m. Without loss of generality we assume that xl > 0.
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The solution of the above problem determines then the next iterate xk+1.
We do not investigate here the question how the mathematical structure of the
subproblem can be exploited to get an efficient solution algorithm. As long as
the problem is not too big, we may assume without loss of generality, that is
solved by any standard nonlinear programming technique.

To control the degree of convexification and to adjust it with respect to the
problem to be solved, Svanberg (1987) introduced so-called moving asymptotes
Ui and Li to replace xi and 1/xi by

1

xi − Li
,

1

Ui − xi

where Li and Ui are given parameters, which can also be adjusted from one
iteration to the next. The algorithm is called method of moving asymptotes.
The larger flexibility allows a better convex approximation of the problem and
thus a more efficient and robust solution.

In this case, the approximation is of the form

hj(x) := hj(xk) +
∑
i∈I+

j,k

∂

∂xi
hj(xk)

(
(Ui − xki )

2

Ui − xi
− (Ui − xki )

)
(4)

−
∑
i∈I−

j,k

∂

∂xi
hj(xk)

(
(xki − Li)

2

xi − Li
− (xki − Li)

)

which is defined for all x ∈ IRn with Li < xi < Ui, i = 1, . . . , n, and for all j
with 0 ≤ j ≤ m.

It is easy to verify that hj(x) is a first order approximation of hj(x) at xk,
i.e. that

hj(xk) = hj(xk) and ∇hj(xk) = ∇hj(xk) ,

and that hj(x) is a convex and separable function, j = 0, . . . , m. The first
convex approximation (2) can be considered as a limit case of the approximation
by moving asymptotes, since we get it back through Li = 0 and Ui → ∞.

Practical experience shows, that in some cases the approximation of the
objective function is almost linear because of small constants ci0,k e.g. in the
neighbourhood of a solution. To avoid instabilities when solving the subproblem,
Svanberg (1993) suggested to append a quadratic term to the approximation of
the objective function which guarantees strict convexity of the objective function.
Proceeding from the notation

hj(x) := cij,k +
∑
i∈I+

j,k

cij,k
Ui − xi

−
∑
i∈I−

j,k

cij,k
xi − Li

with suitable constants cij,k and cij,k, we get the modified objective function of
the subproblem by

h0(x) := ci0,k +
∑

i∈I+
0,k

ci0,k + ε(xi − xki )
2

Ui − xi
−

∑
i∈I−

0,k

ci0,k + ε(xi − xki )
2

xi − Li
(5)
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with a suitable constant ε > 0.
Moreover we have to avoid that a solution of the subproblem approaches one

of the asymptotes. Thus we introduce a sufficiently small constant ω > 0 and
define new bounds by

xli := max{xli, Li + ω(xki − Li)}
xui := min{xui , Ui − ω(Ui − xki )}

where xl = (xl1, . . . , x
l
n)

T , xu = (xu1 , . . . , x
u
n)

T . With xl = (xl1, . . . , x
l
n)

T and
xu = (xu1 , . . . , x

u
n)

T we finally get the subproblem

minh0(x)

x ∈ IRn : hj(x) ≤ 0 , j = 1, ...,m (6)

xl ≤ x ≤ xu

This approximation remains separable and is strictly convex with two major
advantages:

• The subproblem has a unique solution, if it is at all solvable.

• Very efficient dual methods for solving the subproblem are applicable, cf.
Fleury (1989), Svanberg (1987) or Zillober (1992).

Next we state a result which is important to identify a solution.

Lemma 2.1: x� is a stationary point of (1) if and only if x� is a stationary
point of (6).

The proof for this lemma as well as the proofs for all following statements
can be found in Zillober (1993a) and Zillober (1992).

The asymptotes Li and Ui, respectively, can be adapted during the iteration
process to keep them as tight as possible on the one hand, and to extend them
on the other hand whenever it turns out that the initial choice was too narrow.
To be able to prove the desired convergence results, we consider only special
asymptotes.

Definition 2.2: A strategy for the choice of asymptotes is called continuous, if
for any sequence xk → x, x ∈ IRn, we have Li(xk) → Li(x) and Ui(xk) → Ui(x)
for i = 1 . . . n.

By the notation Li(xk), Ui(xk) we identify the asymptotes resulting from the
evaluation of the chosen strategy at the point xk ∈ IRn. These asymptotes may
depend on the current iteration point, additionally on previous iteration points,
or may be independent of the iteration point. In the theorems of the subsequent
section we will always assume that the strategy for the choice of the asymptotes
is continuous.
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3 The Sequential Convex Programming Method

A sequential convex programming method with moving asymptotes consists ba-
sically of the following steps:

1. Starting from an initial iterate x0 and initial asymptotes Li and Ui, i =
1, . . . , n, create a convex, separable subproblem of the form (6) and solve
it by any optimization technique.

2. Update the asymptotes and repeat.

For the original SCP method based on subproblem (3), Nguyen et al. (1987)
presented a convergence proof for the case that (1) consists of convex problem
functions. They showed furthermore by some examples that a generalization of
the result to non-convex constraints is not possible.

It is well known that a line search with respect to a suitable merit function
stabilizes an optimization algorithm in particular by preventing too large steps
outside of the feasible region. In general a line search requires additional function
evaluations, i.e. extra costs.

First we reformulate (1) to get a simplified notation for the theoretical analy-
sis of this section, by assuming that upper and lower bounds for the variables are
treated as part of the general inequality constraints. Without loss of generality,
we proceed now from the problem

minh0(x)

x ∈ IRn : hj(x) ≤ 0 , j = 1, ...,m (7)

In this case the lower and upper bounds in subproblem (6) are defined by

xli := Li + ω(xki − Li)

xui := Ui − ω(Ui − xki )

Next we introduce an augmented Lagrange function by

Φr(x,u) = h0(x) +

m∑
j=1

⎧⎪⎨
⎪⎩

ujhj(x) +
r

2
h2j(x) , if hj(x) ≥ −uj

r
u2j
2r

, otherwise
(8)

which is defined for all x ∈ IRn and u ∈ IRm. The so-called penalty parame-
ter r must be sufficiently large and controls the degree of penalization when
leaving the feasible region. This function is also used in a sequential quadratic
programming method for solving general nonlinear optimization problems, see
Schittkowski (1981).

Now we formulate the algorithm, which we call SCP or sequential convex
programming method to indicate the similarity to the SQP-method.
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Algorithm 3.1:

Step 0 : Choose x0 ∈ IRn, u0 ≥ 0, u0 ∈ IRm, 0 < c < 1, 0 < ψ < 1, r > 0,
ε > 0, and let k := 0.

Step 1 : Compute hj(xk), ∇hj(xk), j = 0, . . . ,m.

Step 2 : Compute Lk
i and Uk

i , i = 1, . . . , n, by a suitable strategy, and define

hj(xk) for j = 0, . . . ,m, by (4) and (5), respectively.

Step 3 : Solve (6) by any internal method and let yk, vk be the solution, where
vk denotes the corresponding vector of Lagrange multipliers.

Step 4 : If yk = xk, then stop, xk is a stationary point.

Step 5 : Let δk := ‖yk − xk‖,
ηk := 1

2 min

{
min
i=1..n

{
2ε

(Uk
i − xki )

2

(Uk
i − Lk

i )
3

}
, min

i=1..n

{
2ε

(xki − Lk
i )

2

(Uk
i − Lk

i )
3

}}

Step 6 : Compute Φr(xk,uk), ∇Φr(xk,uk), and γk := ∇Φr(xk,uk)
T
(xk−yk
uk−vk

)
.

Step 7 : If γk <
1
4ηkδ

2
k, let r := 10r and goto step 6. Otherwise compute the

smallest j = 0, 1, 2 . . ., such that
Φr(xk − ψjyk,uk − ψjvk) ≤ Φr(xk,uk)− cψjγk.

Set αk := ψj.

Step 8 : Let xk+1 := xk − αkyk, uk+1 := uk − αkvk, and k := k + 1.
Then repeat with step 1.

Suitable constants for initializing the algorithm, are c = 0.001, ψ = 0.5,
ε = 0.001 and r = 1.

The difficulty in proving any global convergence result for the sequential
convex programming method is to show, that the search direction defined by
Step 3 of the algorithm, is a descent direction for Φr and that the resulting
sequence of penalty parameters is bounded.

The next lemma shows that the sequence (xk,uk)k=0,1,2,... is bounded under
some reasonable assumptions.

Lemma 3.2: Let the sequence {(xk,uk)}k=0,1,2,... be produced by Algorithm
(3.1), all subproblems be solvable and gradients of active constraints at the in-
termediate iterates xk be linear independent as well as those at any possible
accumulation point of {xk}k=1,2,3,.... If the sequence {xk} is bounded, then also
the sequence {uk} for k = 1, 2, 3, . . . .

Note that the boundedness of {xk} is guaranteed as soon as we include again
our original bounds xl and xu for the variables. Now we are able to state the
first convergence result.

Theorem 3.3: Let the assumptions of Lemma (3.2) be valid for some iterates
xk and uk ≥ 0 of Algorithm (3.1), k = 1, 2, 3, . . ., where none of the xk is a
stationary point for (6). Moreover let ηk, δk be defined as in Algorithm (3.1)
and let the choice of asymptotes be continuous. Then
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1) there is a penalty parameter rk > 0 such that (yk,vk) is a direction of
descent for all r ≥ rk with respect to the augmented Lagrange function Φr,
in other words

∇Φr(xk,uk)
T

(
xk − yk

uk − vk

)
≥ ηkδ

2
k

4

for all r ≥ rk,

2) for each δ > 0 there is a finite rδ such that for all xk,uk and δk ≥ δ we
have

∇Φr(xk,uk)
T

(
xk − yk

uk − vk

)
≥ ηkδ

2
k

4
≥ ηδ2

4

for all r ≥ rδ.

The next theorem shows some conditions which guarantee the boundedness
of the penalty parameter also in case of δk → 0.

Theorem 3.4: Let the asssumptions of Lemma (3.2) be valid and assume a
continuous choice of the asymptotes in Step 2 of Algorithm (3.1). For δk 	= 0
we define γk := (‖uk − v‖/δk)2 with respect to a series of iterates xk, yk, uk,
and vk of Algorithm (3.1), k = 1, 2, 3, . . ., where none of the iterates xk is a
stationary point. Moreover assume that

a) there is a γ ∈ IR, such that γk ≤ γ <∞.

b) hj(xk) ≥ −ukj /r if and only if hj(yk) = 0 for j = 1, . . . ,m, where uk =

(uk1 , . . . , u
k
m)T ,

Then there is a δr > 0, such that

∇Φr(xk,uk)
T

(
xk − yk

uk − vk

)
≥ ηkδ

2
k

4

with δk ≤ δr, where r := min{10j : j = 0, 1, 2, . . . with 10j ≥ 2γ/η}.
As a special consequence of the above theorem, it can be shown that the

penalty parameters of the augmented Lagrangian remain bounded, see Zillober
(1993a). Assumption a) of Theorem (3.4) guarantees a uniform convergence of
both sequences {xk} and {uk}, where b) requires that the same active con-
straints are identified by the convex subproblem (6) and the augmented La-
grangian (8).

From the above descent properties of the search directions generated by Al-
gorithm (3.1), the following convergence theorem can be proved.

Theorem 3.5: Let xk and uk be computed by Algorithm (3.1) satisfying the
assumptions of Lemma (3.2) and Theorem (3.4). Then the algorithm either
terminates at a stationary point, or every accumulation point of the iteration
sequence is a stationary point for (6).
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It is possible to omit the additional assumptions of Theorem (3.5). In this
case it is only possible to prove that at least one accumulation point is stationary,
see Zillober (1993a).

An important assumption for the convergence analysis outlined above, is the
solvability of the convex, separable subproblems, i.e. that these problems possess
non-empty feasible regions. This cannot be ensured in advance and is sometimes
not fulfilled, especially in the first iterations, when we are still far away from a
solution. However there are various techniques to overcome this situation, see
e.g. Fleury, Braibant (1986), Svanberg (1987) or Schittkowski (1983).

4 Numerical Results

The FE-analysis of the comparative study is performed by the software system
MBB-LAGRANGE, see Kneppe, Krammer, and Winkler (1987) or Zoteman-
tel (1993). MBB-LAGRANGE is a computer aided structural design system
based on the finite element technique and mathematical programming. The op-
timization model is characterized by the design variables and different types of
restrictions.

Design variables are element thicknesses, cross sections, concentrated masses,
and fiber angles. Besides of isotropic, orthotropic, and anisotropic applications,
the analysis and optimization of composite structures is among the most impor-
tant features. The design can be restricted with respect to a static, dynamic
or aeroelastic analysis. The general aim is to minimize the structural weight
subject to some of the following constraints:

• displacements

• stresses

• strains

• buckling

• local compressive stresses

• aeroelastic efficiencies

• flutter speed

• natural frequencies

• dynamic responses

• eigenmodes

• weight

• bounds for the design variables (gages)
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Gradients are evaluated either analytically or semi-analytically by a special
sensitivity analysis.

Besides of the nine optimization algorithms included in the official version,
two additional methods are added to the system, i.e. certain variants of convex
approximation methods. The codes represent all major classes of algorithms
that are in practical use at present. Most of the methods have been developed,
implemented, and tested outside of the MBB-LAGRANGE environment, and
are taken over from external authors.

By the subsequent comments, some additional features of the algorithms and
special implementation details are to be outlined. To identify the optimization
codes we use the notation of the MBB-LAGRANGE documentation.

SRM: The stress ratio code belongs to the class of optimality criteria meth-
ods and is motivated by statically determinated structures. The algo-
rithm is applicable to problems with stress constraints only, consists
of a simple update formula for the design variables, and does not need
any gradient information.

IBF: The inverse barrier function method is an implementation of a penalty
method which needs an feasible design to start the algorithm. The
unconstrained minimization is performed with respect to a quasi-
Newton update (BFGS) and an Hermite interpolation procedure for
the line search. It is recommended to perform only a relatively small
number of iterations, e.g. 5 or 10, and to start another cycle by
increasing the penalty parameter through a constant factor.

MOM: Proceeding from the same unconstrained optimization routine as IBF,
a sequential unconstrained minimization technique is applied. The
method of multipliers uses an augmented Lagrangian function similar
to (8) for the subproblem and the usual update rules for the multi-
pliers. Both methods, i.e. IBF and MOM, have a special advantage
when evaluating gradients of the objective function in the subprob-
lem. The inverse of the stiffness matrix obtained by a decomposition
technique, is multiplied only once with the remaining part of the gra-
dient, not for each restriction as required for most of the subsequent
methods.

SLP: The sequential linear programming method was implemented by
Kneppe (1985). The linear subproblem is solved by a simplex method.
So-called move limits are introduced to prevent cycling and iterates
too far away from the feasible area. They are reduced in each itera-
tion by the formula δk+1 = δk/(1 + δk) and an additional cubic line
search is performed as soon as cycling is observed.
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RQP1: The first recursive or sequential quadratic programming code is sub-
routine NLPQL of Schittkowski (1985/86). Subproblems are solved
by a dual algorithm based on a routine written by Powell (1983).
The augmented Lagrangian function (8) serves as a merit function
and BFGS-updates are used for the quasi-Newton formula. The spe-
cial implementation of NLPQL is capable to solve also problems with
very many constraints, see Schittkowski (1992), and is implemented
in MBB-LAGRANGE in reverse communication. The idea is to save
as much working memory as possible by writing optimization data
on a file during the analysis, and by saving analysis data during an
optimization cycle.

RQP2: This is the original sequential quadratic programming code VMCWD
of Powell (1978) with an L1-merit function. Also in this case, the
BFGS-update is used internally together with a suitable modification
of the penalty parameter.

GRG: The generalized reduced gradient code was implemented by
Bremicker (1986). During the line search an extrapolation is per-
formed to follow the boundary of active constraints closer. The
Newton-algorithm for projecting non-feasible iterates during the line
search onto the feasible domain, uses the derivative matrix for the
very first step. Subsequently a rank-1-quasi-Newton formula of Broy-
den is updated.

QPRLT: To exploit the advantages of SQP and GRG methods, a hybrid
method was implemented by Sömer (1987). Starting from a fea-
sible design, a search direction is evaluated by the SQP-approach,
i.e. by solving a quadratic programming subproblem. This direction
is then divided in basic and non-basic variables, and a line search is
performed very similar to the generalized reduced gradient method
GRG.

CONLIN: This is the original implementation of Fleury (1989), where a convex
and separable subproblem is generated as outlined in Section 2. In
particular only variables belonging to negative partial derivatives,
are inverted. The nonlinear subproblem is solved by a special dual
method.

SCP: The sequential convex programming method was implemented by
Zillober (1993b) and added to the MBB-LAGRANGE-system for
the purpose of this comparative study. The algorithm uses moving
asymptotes and a line search procedure for stabilization with respect
to the merit function (8).

MMA: The code is a reimplementation of the original convex approximation
method of Svanberg (1987) with moving asymptotes. As for CONLIN
and SCP, the subproblems are solved by a special dual approach. The
adaption of moving asymptotes is described in Zillober (1993b).
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To conduct the numerical tests, 79 design problems have been collected.
Most of them are academic ones, i.e. are more or less simple design problems
found in the literature. The remaining ones possess some practical real life
background from project work or are suitable modifications to act as benchmark
test problems for the development of the software system. In all situations,
we minimize the weight of a structure subject to displacement, stress, strain,
buckling, dynamic and other constraints. Design variables are sizing variables,
e.g. cross sectional areas and thicknesses of skeletal as well as membran or shell
structures.

Since moreover all test examples are to be solvable by all available optimiza-
tion algorithms, the dimension of the structures, i.e. number of elements and
degrees of freedom, is relatively small compared to real life applications. More
details about the test cases are found in Schittkowski, Zillober and Zotemantel
(1993).

We believe that the present set of test cases is representative at least for
small or medium size structural designs. It is also important to note that we
do not want to test the analysis part of an FE-system. Instead the response of
optimization routines when applied to solve structural optimization problems,
is to be investigated.

All tests have been performed on a VAX 6000-510 running under VMS, at
the Computing Center of the University of Bayreuth. The numerical codes are
implemented in double precision FORTRAN. The intention behind our tests
is to apply all optimization routines to all test examples that are available.
To evaluate the results achieved, we need some information about the optimal
solution, since the difference from the minimal weight of a test structure and
the corresponding constraint violation serves as a measure for the accuracy of
an actual iterate.

Thus we have to compute an optimal solution for each test case as accurate as
possible. The most reliable codes were executed with a very small termination
tolerance and a large number of iterations, until we got a stable and reliable
solution. Test examples that did not lead to a clear solution point e.g. because
of too many different local minimizers, have not been included in our set of test
problems.

Having now an accepted reference value, it is possible to define whether an
actual iterate xk is sufficiently close to the optimal solution x� subject to a
given tolerance ε > 0 or not. For each function or gradient evaluation during
a test run, we store the corresponding objective function value h0(xk) and the
maximum constraint violation

r(xk) := max{max(0, hj(xk)) : j = 1, . . . ,m}

together with some further data for analysis number and calculation time.
Now we are able to evaluate the performance of an algorithm subject to a

given accuracy level ε. We sum up the performance criterion, e.g. calculation
time or number of function and gradient evaluations, until for the first time the
conditions

12



h0(xk) ≤ h0(x
�)(1 + ε) , r(xk) ≤ ε (9)

are satisfied. We should note here that the constraint functions are scaled inter-
nally by the analysis procedure of MBB-LAGRANGE.

Moreover there are some reasonable upper bounds for the number of itera-
tions, and we must be aware of the fact that there are situations where a code
is unable to find at least one solution in a test problem class within the given
accuracy level and the maximum number of iterations.

For the purpose of our comparative study, we evaluate the performance cri-
teria

– calculation time in seconds

– number of function evaluations, where an evaluation of objective and
all constraints is counted as one function call

– number of gradient evaluations, i.e. evaluation of gradient of objective
function and of all active constraints, where active constraints are
determined by the internal active set strategy of MBB-LAGRANGE

A complete description of the test procedure and the numerical results is
found in Schittkowski, Zillober and Zotemantel (1993). For the purpose of this
review paper, we present some numerical comparative results in form of quo-
tients of mean values of two optimization algorithms, where the mean value is
taken over the common subset of successfully solved problems. Since the numer-
ical figures for the performance criterion calculation time differ drastically, we
use the geometric mean in this case. Thus we get a matrix with the correspond-
ing quotients, and their normalized row sums can be considered as weights or
performance items.

Since we present only results for the complete test set without further re-
strictions, the optimization codes IBF and SRM are omitted in the subsequent
tables. The first one requires a feasible initial design, and the second one is
applicable only to problems with stress constraints.

For the accuracy levels ε = 0.01 and ε = 0.0001, the subsequent tables
present the corresponding results. Table 1 and Table 5 show the number of
test problems that could be solved successfully by two optimization algorithms,
and the other ones show the corresponding mean values for the performance
criteria calculation time, number of function evaluations and number of gradient
evaluations, respectively.
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MOM SLP RQP1 RQP2 GRG QPRLT CONLIN SCP MMA
MOM 49 44 47 45 44 43 35 44 41
SLP 44 59 58 56 46 53 41 54 54
RQP1 47 58 66 60 50 60 44 57 57
RQP2 45 56 60 61 49 57 43 57 56
GRG 44 46 50 49 53 49 39 48 47
QPRLT 43 53 60 57 49 64 43 56 55
CONLIN 35 41 44 43 39 43 45 42 43
SCP 44 54 57 57 48 56 42 60 56
MMA 41 54 57 56 47 55 43 56 58

Table 1: Number of problems solved successfully by two optimization
codes w.r.t. ε = 0.01

MOM SLP RQP1 RQP2 GRG QPRLT CONLIN SCP MMA Weight
21.96 19.17 20.56 16.43 18.55 17.87 15.84 16.77 16.05MOM
21.96 5.08 10.81 6.04 7.34 5.30 3.23 6.85 4.03

27.16

5.08 6.62 6.52 6.20 4.66 6.51 4.14 6.31 6.04SLP
19.17 6.62 12.87 7.70 7.07 7.68 3.44 8.26 5.59

7.28

10.81 12.87 17.38 13.25 9.92 16.08 10.63 12.72 12.16RQP1
20.56 6.52 17.38 8.68 7.57 9.51 4.12 9.07 6.53

14.15

6.04 7.70 8.68 8.69 6.37 9.22 6.87 8.29 8.07RQP2
16.43 6.20 13.25 8.69 6.99 8.59 3.88 8.99 6.36

9.39

7.34 7.07 7.57 6.99 8.51 8.64 7.09 8.38 7.24GRG
18.55 4.66 9.92 6.37 8.51 6.16 3.69 6.97 4.32

11.20

5.30 7.68 9.51 8.59 6.16 10.46 6.79 9.74 8.93QPRLT
17.87 6.51 16.08 9.22 8.64 10.46 4.42 10.75 6.93

8.61

3.23 3.44 4.12 3.88 3.69 4.42 4.29 4.11 4.11CONLIN
15.84 4.14 10.63 6.87 7.09 6.79 4.29 6.52 4.47

5.82

6.85 8.26 9.07 8.99 6.97 10.75 6.52 10.22 8.93SCP
16.77 6.31 12.72 8.29 8.38 9.74 4.11 10.22 6.80

9.54

4.03 5.59 6.53 6.36 4.32 6.93 4.47 6.80 6.63MMA
16.05 6.04 12.16 8.07 7.24 8.93 4.11 8.93 6.63

6.86

Table 2: Geometric mean values for calculation time over common
sets of successfully solved problems w.r.t. ε = 0.01
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MOM SLP RQP1 RQP2 GRG QPRLT CONLIN SCP MMA Weight
98.06 103.02 101.04 100.98 99.82 103.30 108.46 95.05 100.78MOM
98.06 9.59 17.64 12.56 29.41 16.74 5.09 22.55 6.54

43.72

9.59 10.29 10.16 10.41 9.46 10.53 7.66 9.96 9.74SLP
103.02 10.29 15.95 12.29 46.43 37.70 6.24 15.91 6.70

3.66

17.64 15.95 18.65 15.72 16.18 17.88 15.09 14.68 13.35RQP1
101.04 10.16 18.65 13.13 45.02 48.53 6.45 16.95 7.25

5.59

12.56 12.29 13.13 13.08 12.78 13.46 11.81 11.54 10.91RQP2
100.98 10.41 15.72 13.08 45.00 39.39 6.37 17.18 7.16

4.49

29.41 46.43 45.02 45.00 45.21 47.45 41.85 48.29 46.15GRG
99.82 9.46 16.18 12.78 45.21 24.94 6.13 21.40 6.94

17.34

16.74 37.70 48.53 39.39 24.94 46.94 32.47 41.18 41.27QPRLT
103.30 10.53 17.88 13.46 47.45 46.94 6.81 20.07 7.29

13.45

5.09 6.24 6.45 6.37 6.13 6.81 6.69 6.74 6.60CONLIN
108.46 7.66 15.09 11.81 41.85 32.47 6.69 17.50 6.58

2.63

22.55 15.91 16.95 17.18 21.40 20.07 17.50 19.60 15.55SCP
95.05 9.96 14.68 11.54 48.29 41.18 6.74 19.60 7.39

6.39

6.54 6.70 7.25 7.16 6.94 7.29 6.58 7.39 7.29MMA
100.78 9.74 13.35 10.91 46.15 41.27 6.60 15.55 7.29

2.73

Table 3: Arithmetic mean values for number of function evaluations over common
sets of successfully solved problems w.r.t. ε = 0.01

MOM SLP RQP1 RQP2 GRG QPRLT CONLIN SCP MMA Weight
121.71 120.59 124.26 118.00 112.27 117.63 125.49 116.05 122.15MOM
121.71 17.23 22.64 18.40 6.73 5.30 8.23 20.59 11.12

55.67

17.23 18.61 18.34 18.86 16.96 19.09 13.37 17.96 17.52SLP
120.59 18.61 22.10 18.96 9.04 8.98 10.54 17.70 11.44

6.62

22.64 22.10 24.45 20.90 20.88 23.33 20.32 19.79 18.84RQP1
124.26 18.34 24.45 19.53 8.88 10.13 10.95 18.91 12.53

7.69

18.40 18.96 19.53 19.51 18.98 19.96 18.14 17.75 17.43RQP2
118.00 18.86 20.90 19.51 8.86 9.05 10.79 18.95 12.36

7.05

6.73 9.04 8.88 8.86 8.77 9.12 8.26 9.25 8.81GRG
112.27 16.96 20.88 18.98 8.77 6.47 10.31 20.50 11.91

3.62

5.30 8.98 10.13 9.05 6.47 9.80 7.26 9.32 9.20QPRLT
117.63 19.09 23.33 19.96 9.12 9.80 11.67 20.25 12.62

3.02

8.23 10.54 10.95 10.79 10.31 11.67 11.42 11.52 11.26CONLIN
125.49 13.37 20.32 18.14 8.26 7.26 11.42 18.67 11.21

4.59

20.59 17.70 18.91 18.95 20.50 20.25 18.67 20.00 17.71SCP
116.05 17.96 19.79 17.75 9.25 9.32 11.52 20.00 12.82

7.11

11.12 11.44 12.53 12.36 11.91 12.62 11.21 12.82 12.62MMA
122.15 17.52 18.84 17.43 8.81 9.20 11.26 17.71 12.62

4.64

Table 4: Arithmetic mean values for number of gradient evaluations over common
sets of successfully solved problems w.r.t. ε = 0.01
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MOM SLP RQP1 RQP2 GRG QPRLT CONLIN SCP MMA
MOM 19 16 17 15 15 10 13 15 14
SLP 16 48 46 46 36 37 32 43 44
RQP1 17 46 60 54 43 48 34 51 52
RQP2 15 46 54 57 43 46 35 52 53
GRG 15 36 43 43 48 42 33 40 41
QPRLT 10 37 48 46 42 55 31 43 44
CONLIN 13 32 34 35 33 31 37 35 35
SCP 15 43 51 52 40 43 35 54 51
MMA 14 44 52 53 41 44 35 51 54

Table 5: Number of problems solved successfully by two optimization
codes w.r.t. ε = 0.0001

MOM SLP RQP1 RQP2 GRG QPRLT CONLIN SCP MMA Weight
42.20 29.70 28.32 19.00 24.93 16.32 24.33 24.42 25.51MOM
42.20 5.61 12.64 6.88 8.58 5.23 4.24 5.73 4.76

31.58

5.61 5.48 5.25 5.08 4.82 5.69 4.64 4.99 4.84SLP
29.70 5.48 9.80 5.67 6.49 5.74 3.54 6.32 4.40

7.30

12.64 9.80 15.35 12.17 8.99 13.83 8.04 11.77 11.67RQP1
28.32 5.25 15.35 7.43 6.89 8.76 3.37 8.19 6.23

13.07

6.88 5.67 7.43 8.42 5.94 7.50 5.69 7.46 7.41RQP2
19.00 5.08 12.17 8.42 7.35 7.74 3.44 8.33 6.25

8.31

8.58 6.49 6.89 7.35 9.50 9.98 8.23 7.93 6.90GRG
24.93 4.82 8.99 5.94 9.50 7.01 3.89 6.37 4.36

10.68

5.23 5.74 8.76 7.74 7.01 11.33 6.23 9.09 7.76QPRLT
16.32 5.69 13.83 7.50 9.98 11.33 3.97 9.14 6.48

8.17

4.24 3.54 3.37 3.44 3.89 3.97 4.19 4.24 3.84CONLIN
24.33 4.64 8.04 5.69 8.23 6.23 4.19 7.76 4.28

5.33

5.73 6.32 8.19 8.33 6.37 9.14 7.76 9.79 8.97SCP
24.42 4.99 11.77 7.46 7.93 9.09 4.24 9.79 6.40

9.03

4.76 4.40 6.23 6.25 4.36 6.48 4.28 6.40 6.69MMA
25.51 4.84 11.67 7.41 6.90 7.76 3.84 8.97 6.69

6.54

Table 6: Geometric mean values for calculation time over common
sets of successfully solved problems w.r.t. ε = 0.0001
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MOM SLP RQP1 RQP2 GRG QPRLT CONLIN SCP MMA Weight
131.63 139.00 137.35 145.00 133.27 99.00 157.77 146.07 148.57MOM
131.63 9.69 20.29 17.40 39.73 12.00 8.54 15.13 8.36

47.76

9.69 13.42 13.33 13.74 13.11 14.62 11.78 14.05 13.70SLP
139.00 13.42 16.00 12.22 41.33 29.86 7.41 18.88 8.52

4.22

20.29 16.00 19.52 15.98 17.56 18.90 14.85 14.73 14.56RQP1
137.35 13.33 19.52 13.57 49.00 56.65 7.35 19.80 9.88

4.59

17.40 12.22 13.57 13.88 12.65 12.54 12.74 13.52 12.94RQP2
145.00 13.74 15.98 13.88 50.49 42.80 7.29 19.92 9.81

3.88

39.73 41.33 49.00 50.49 55.44 56.76 55.91 59.65 47.93GRG
133.27 13.11 17.56 12.65 55.44 37.07 7.06 20.70 8.93

15.71

12.00 29.86 56.65 42.80 37.07 60.31 35.65 55.37 43.84QPRLT
99.00 14.62 18.90 12.54 56.76 60.31 6.19 20.09 9.34

12.72

8.54 7.41 7.35 7.29 7.06 6.19 7.35 7.49 7.17CONLIN
157.77 11.78 14.85 12.74 55.91 35.65 7.35 22.97 7.57

2.35

15.13 18.88 19.80 19.92 20.70 20.09 22.97 20.76 19.27SCP
146.07 14.05 14.73 13.52 59.65 55.37 7.49 20.76 9.49

6.01

8.36 8.52 9.88 9.81 8.93 9.34 7.57 9.49 9.81MMA
148.57 13.70 14.56 12.94 47.93 43.84 7.17 19.27 9.81

2.75

Table 7: Arithmetic mean values for number of function evaluations over common
sets of successfully solved problems w.r.t. ε = 0.0001

MOM SLP RQP1 RQP2 GRG QPRLT CONLIN SCP MMA Weight
237.21 240.94 242.29 246.60 219.40 91.70 277.62 249.00 247.93MOM
237.21 17.44 29.12 24.87 8.60 4.50 15.15 20.47 14.79

63.20

17.44 24.85 24.67 25.50 24.25 27.27 21.59 26.12 25.43SLP
240.94 24.85 23.15 19.76 8.14 7.81 12.84 21.74 15.07

7.25

29.12 23.15 27.42 22.91 23.51 25.73 20.50 21.78 21.67RQP1
242.29 24.67 27.42 21.50 9.37 12.27 12.74 23.39 17.79

5.75

24.87 19.76 21.50 22.30 19.84 20.07 19.91 21.52 21.26RQP2
246.60 25.50 22.91 22.30 9.74 10.63 12.60 23.44 17.64

5.23

8.60 8.14 9.37 9.74 10.25 10.33 9.91 10.68 9.24GRG
219.40 24.25 23.51 19.84 10.25 8.10 12.15 22.77 15.88

2.71

4.50 7.81 12.27 10.63 8.10 12.29 7.65 12.26 10.80QPRLT
91.70 27.27 25.73 20.07 10.33 12.29 10.42 22.81 16.70

2.53

15.15 12.84 12.74 12.60 12.15 10.42 12.73 13.00 12.37CONLIN
277.62 21.59 20.50 19.91 9.91 7.65 12.73 24.14 13.17

3.49

20.47 21.74 23.39 23.44 22.77 22.81 24.14 24.39 22.88SCP
249.00 26.12 21.78 21.52 10.68 12.26 13.00 24.39 17.00

5.65

14.79 15.07 17.79 17.64 15.88 16.70 13.17 17.00 17.65MMA
247.93 25.43 21.67 21.26 9.24 10.80 12.37 22.88 17.65

4.19

Table 8: Arithmetic mean values for number of gradient evaluations over common
sets of successfully solved problems w.r.t. ε = 0.0001
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Conclusions

The paper describes a class of methods for nonlinear programming, which is
applicable only in certain situations, where inverse variables in constraints dom-
inate. The algorithm generates a sequence of convex, separable nonlinear sub-
problems, which must be solved in each iteration. It is shown how the algorithm
can be stabilized by a line search with an augmented Lagrangian merit function.
Some theoretical convergence results are mentioned.

Also the numerical results of a comparative study of optimization routines are
included. The 79 test problems are taken from structural design optimization,
where the FE-analysis is performed by the software system MBB-LAGRANGE.
The results indicate, that the sequential convex programming method belongs
not only to the most reliable approach, but is also more efficient than classical
nonlinear programming algorithms, e.g. sequential quadratic programming.
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optimization. Birkhäuser Verlag, Basel, ISNM 110

Kneppe, G. (1985): Direkte Lösungsstrategien zur Gestaltsoptimierung von Flä-
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Schittkowski eds., Birkhäuser, Basel, Boston, Berlin

19


