A Robust Implementation of a Sequential Quadratic
Programming Algorithm with Successive Error

Restoration

- 1st Revision -

Address: Prof. K. Schittkowski
Department of Computer Science
University of Bayreuth
D - 95440 Bayreuth

Phone: (4+49) 921 557750
E-mail: klaus.schittkowski@uni-bayreuth.de
Date: May, 2010

Abstract

We consider sequential quadratic programming (SQP) methods for solving con-
strained nonlinear programming problems. It is generally believed that these meth-
ods are sensitive to the accuracy by which partial derivatives are provided. One
reason is that differences of gradients of the Lagrangian function are used for up-
dating a quasi-Newton matrix, e.g., by the BFGS formula. The purpose of this
paper is to show by numerical experimentation that the method can be stabilized
substantially. The algorithm applies non-monotone line search and internal and
external restarts in case of errors due to inaccurate derivatives while computing the
search direction. Even in case of large random errors leading to partial derivatives
with at most one correct digit, termination subject to an accuracy of 10~7 can be
achieved in 90 % of 306 problems of a standard test suite. On the other hand,
the original version with monotone line search and without restarts solves only 30
% of these problems under the same test environment. In addition, we show how
initial and periodic scaled restarts improve the efficiency in situations with slow
convergence.

Keywords: SQP; sequential quadratic programming; nonlinear programming; line search;
restart; numerical algorithm; noisy functions

1 Introduction

We consider the general optimization problem to minimize an objective function under
nonlinear equality and inequality constraints,

min f(z)
n . g](m):(], j:17"'7m€
TR)20, G=met . m 1)
T <z <a,

where x is an n-dimensional parameter vector. It is assumed that all problem functions
f(z) and g;(z), j =1, ..., m, are continuously differentiable on the whole IR".

Sequential quadratic programming (SQP) is the standard general purpose method to
solve smooth nonlinear optimization problems, at least under the paradigm that func-
tion and gradient values can be evaluated with sufficiently high precision, see Schit-
tkowski [18, 19] based on academic and Schittkowski et al. [28] based on structural me-
chanical engineering test problems.

SQP methods can be extended to solve also nonlinear least squares problems effi-
ciently, see Schittkowski [22, 23], to run under distributed systems by using a parallel
line search, see Schittkowski [27], or to handle problems with very many constraints, see
Schittkowski [25]. A combination of an SQP and IPM approach is implemented by Sach-
senberg [17] to solve very large and sparse problems. Meanwhile, there exist hundreds of
commercial and academic applications of SQP codes.

However, SQP methods are quite sensitive subject to round-off or any other errors
in function and especially gradient values. If objective or constraint functions cannot be
computed within machine accuracy or if the accuracy by which gradients are approximated
is above the termination tolerance, the code could break down with the error message.
To avoid termination and to continue the iteration, one possibility is to make use of
non-monotone line search. The idea is to replace the reference value of the line search
termination check, 1, (g, vx), by

max{y,, (v;,v;) 1 j =k —p,...,k} ,

where 1,.(z,v) is a merit function and p a given parameter. The general idea is described in
Dai and Schittkowski [5], where a convergence proof for the constrained case is presented.

Despite of strong analytical results, SQP methods do not always terminate successfully.
Besides of the difficulties leading to the usage of non-monotone line search, it might happen
that the search direction as computed from a quadratic programming subproblem, is not
a downhill direction of the merit function. This is an important assumption to be able to
perform a line search. Possible reasons are again severe errors in function and especially
gradient evaluations, or a violated regularity condition concerning linear independency
of gradients of active constraints (LICQ). In the latter case, the optimization problem is
not modeled in a suitable way to solve it directly by an SQP method. We propose to

perform an automated restart as soon as a corresponding error message appears. The
BFGS quasi-Newton matrix is reset to a multiple of the identity matrix and the matrix
update procedure starts from there.

Restarting procedures are not new and are for example discussed by Gill and Leonard [0]
in the framework of limited-memory updates. See also an early paper of Nocedal [13] for
a modified BFGS update. Restarts are also implemented in existing software, see e.g. the
code do2nlp of Spellucci [29].

Scaling is an extremely important issue and an efficient procedure is difficult to derive
in the general case without knowing anything about the internal numerical structure
of the optimization problem. It is possible, for example, to start the BFGS update
procedure from a multiple of the identity matrix, which takes into account information
from the previous and the actual iterates. This restart can be repeated periodically with
successively adapted scaling parameters.

For our numerical tests, we use two collections with 306 test problems, see Hock and
Schittkowski [9] and in Schittkowski [21]. Fortran source codes and a test frame can be
downloaded from the home page of the author,

http://www.klaus-schittkowski.de

Many of them became part of the Cute test problem collection of Bongartz et al. [3].

In Section 2 we outline the general mathematical structure of an SQP algorithm, es-
pecially the non-monotone line search. Section 3 contains some numerical results showing
the sensitivity of an SQP algorithm with respect to gradient approximations by forward
differences under uncertainty. We test and compare the non-monotone line search versus
the monotone one, and generate noisy test problems by adding random errors to function
values and by inaccurate gradient approximations. This situation appears frequently in
practical environments, where complex simulation codes prevent accurate responses and
where gradients can only be computed by a difference formula. The main result is that
even in case of large random errors leading to partial derivatives with at most one correct
digit, termination subject to an accuracy of 10~7 can be achieved in 90 % of the test runs.

Another set of test problems is derived from fully discretized semi-linear elliptic con-
trol problems, see Maurer and Mittelmann [I11, 12]. They possess a different numerical
structure, i.e., a large number variables and weakly nonlinear equality constraints, and
are easily scalable to larger size. We use a subset of them with only 722 and 798 variables,
since our SQP code is unable to exploit sparsity. Some test results for up to 5.000.000
variables and 2.500.000 constraints are presented in Sachsenberg [17]. The resulting finite
dimensional nonlinear programs require a relatively large number of iterations until suc-
cessful termination. We show how different automated scaling procedures accelerate the
convergence drastically.

2 Sequential Quadratic Programming Methods

Sequential quadratic programming (SQP) methods belong to the most powerful nonlinear
programming algorithms we know today for solving differentiable nonlinear programming
problems of the form (1). The theoretical background is described e.g. in Stoer [30] or
in Boggs and Tolle [?]. Their excellent numerical performance is tested and compared
with other methods in Schittkowski [1%], and since many years they belong to the most
frequently used algorithms to solve practical optimization problems.

To facilitate the notation of this section, we assume that upper and lower bounds x,
and z; are not handled separately, i.e., we consider the somewhat simpler formulation

min f(x)
PR () =0, j=1..m. o)
gj(x)207 j:me+1,...7m

It is assumed that all problem functions f(z) and g;(z), j = 1, ..., m, are continuously
differentiable on R".

The basic idea is to formulate and solve a quadratic programming subproblem in
each iteration which is obtained by linearizing the constraints and approximating the
Lagrangian function

Do) = () = 3 w50 ®)

quadratically, where x € IR™ is the primal variable and u = (uy, ..., u,)T € IR™ the dual
variable or the vector of Lagrange multipliers, respectively.

To formulate the quadratic programming subproblem, we proceed from given iterates
x, € IR™, an approximation of the solution, v, € IR™, an approximation of the multipliers,
and B, € IR™"™, an approximation of the Hessian of the Lagrangian function. Then we
solve the quadratic programming problem

de R": Vgj(zp)Td+gj(zx) =0, j=1,...,m (4)
ng(xk)Td—i-gj(xk)ZO, j:me—i-l,...,m

Let d; be the optimal solution and u; the corresponding multiplier of this subproblem.
A new iterate is obtained by

()= () re®) <5>

where oy, € (0, 1] is a suitable steplength parameter.
Although we are able to guarantee that the matrix By, is positive definite, it is possible
that (4) is not solvable due to inconsistent constraints. As proposed by Powell [11],

one possible remedy is to introduce an additional variable to (4) leading to a modified
quadratic programming problem, see Schittkowski [20] for details. Given a constant € > 0,
we define the sets

Tﬁ’“) ={jel: gj(zy) <ecor v,(cj) >0} Ték) =]\jgk) , (6)
with v, = (v, ..., 0™)T and I = {j : m. < j < m}, and solve the following subproblem
in each step,

minimize %dTBkd + Vf(x)Td + %Qk(SZ

de R",6€10,1]: Vg;(zp)Td+ (1 —=08)g;(zx) =0, j=1,...,m,,)
R 7
Vi () d+ (1= 0)g;(xx) >0 , jeT, (
Vi (ax)7d + gj(wx) >0 jeTd

We denote by (dy, ux) the solution of the quadratic program (4), where uy is the
multiplier vector, and by J, the additional variable to prevent inconsistent linear con-
straints. Under the linear independency constraint qualification (LICQ), it is easy to see
that dx < 1. For the global convergence analysis, any choice of By is appropriate as long
as the eigenvalues are bounded away from zero. (7) could further be modified by an active
set strategy, see Schittkowski [20], but this is not relevant for the purpose of this paper.
However, to guarantee a superlinear convergence rate, we update By by the BFGS quasi-
Newton method together with a stabilization to guarantee positive definite matrices, see
Powell [14, 15]. The penalty parameter gy is required to reduce the perturbation of the
search direction by the additional variable § as much as possible. A suitable choice is
given in Schittkowski [19], which guarantees the sufficient descent of the search direction
and prevents undue increase.

The steplength parameter «y is required in (5) to enforce global convergence of the
SQP method, i.e., the approximation of a point satisfying the necessary Karush-Kuhn-
Tucker optimality conditions, when starting from arbitrary initial values, typically a user-
provided zy € IR" and vy = 0, By = I. «ay should satisfy at least a sufficient decrease
condition of a merit function ¢,(a) given by

o@=u((5)ra(,",)) 0

with a suitable penalty function v,.(z,v). One possibility is to apply the augmented
Lagrangian function investigated by Rockafellar [16],

. 1 1
Ur(w,v) = fx) = Y (vg5(2) - 57"j9j(3€)2) 3 > v/, (9)
jeJ jeK
with J ={1,...,mJU{j:m. <j <m,gj(x) <w;/r;} and K = {1,...,m} \ J, cf.
Schittkowski [19] and Rockafellar [16]. The objective function is penalized as soon as an

iterate leaves the feasible domain. The corresponding penalty parameters r;, j =1, ...,
m, which control the degree of constraint violation, must be carefully chosen to guarantee
a descent direction of the merit function, see Schittkowski [19] or Wolfe [33] in a more
general setting, i.e., to get

Uk — Vg

¢, (0) = 74y, (2x, 0) " < b) <0 . (10)

The implementation of a line search algorithm is a crucial issue when implementing a
nonlinear programming algorithm, and has significant effect on the overall efficiency of
the resulting code. On the one hand, we need a line search to stabilize the algorithm. On
the other hand, it is not desirable to waste too many function calls. Moreover, the behavior
of the merit function becomes irregular in case of constrained optimization because of very
steep slopes at the border caused by large penalty terms. The implementation is more
complex than shown above, if linear constraints and bounds of the variables are to be
satisfied during the line search.

Usually, the steplength parameter oy, is chosen to satisfy a certain Armijo [!] condition,
i.e., a sufficient descent condition of the merit function (9) which guarantees convergence to
a stationary point. However, to take the curvature of the merit function into account, we
need some kind of compromise between a polynomial interpolation, typically a quadratic
one, and a reduction of the stepsize by a given factor, until as a stopping criterion is
reached. Since ¢,(0), ¢.(0), and ¢, (c;) are given, «; the actual iterate of the line search
procedure, we easily get the minimizer of the quadratic interpolation. We accept then
the maximum of this value and the Armijo parameter as a new iterate, as shown by the
subsequent code fragment.

Algorithm 2.1 Let 8, p with0 < 8 <1, 0 < pu < 0.5 be given.
Start: ag =1
Fori=20,1,2,... do:
1) If ¢p(ay) < &.(0) + p o ¢.(0), then stop.
0.5 a2 6,(0)
a;$.(0) — ¢r(ci) + ¢,(0)

3) Let a1 = max(0 oy,).

2) Compute &; =

The algorithm goes back to Powell [11] and corresponding convergence results are
found in Schittkowski [19]. @; is the minimizer of the quadratic interpolation, and we use
the Armijo descent property for checking termination. Step 3 is required to avoid irregular
values, since the minimizer of the quadratic interpolation could be outside of the feasible
domain (0,1]. Additional safeguards are required, for example to prevent violation of
bounds. Algorithm 2.1 assumes that ¢,(1) is known before calling the procedure, i.e.,
that the corresponding function values are given. We stop the algorithm, if sufficient

descent is not observed after a certain number of iterations. If the tested stepsize falls
below machine precision or the accuracy by which model function values are computed,
the merit function cannot decrease further.

It is possible that ¢/.(0) becomes positive due to round-off errors in the partial deriva-
tives or that Algorithm 2.1 breaks down because to too many iterations. In this case, we
proceed from a descent direction of the merit function, but ¢/.(0) is extremely small. To
avoid interruption of the whole iteration process, the idea is to repeat the line search with
another stopping criterion. Thus, we accept a stepsize oy as soon as the inequality

On(on) < max _ or,(0) + arud, (0) (11)

is satisfied, where p(k) is a predetermined parameter with p(k) = min{k,p}, p a given
tolerance. Thus, we allow an increase of the reference value ¢,; (0) in a certain error
situation, i.e., an increase of the merit function value.

To implement the non-monotone line search, we need a queue consisting of merit
function values at previous iterates. In case of k = 0, the reference value is adapted by a
factor greater than 1, i.e., ¢, (0) is replaced by thr,, (0), t > 1. The basic idea to store
reference function values and to replace the sufficient descent property by a sufficient
"ascent’ property in max-form, is described in Dai [1] and Dai and Schittkowski [5], where
convergence proofs are presented. The general idea goes back to Grippo, Lampariello,
and Lucidi [8], and was extended to constrained optimization and trust region methods
in a series of subsequent papers, see, e.g., Toint [31, 32].

Finally one has to approximate the Hessian matrix of the Lagrangian function in a
suitable way. To avoid calculation of second derivatives and to obtain a final superlinear
convergence rate, the standard approach is to update B by the BFGS quasi-Newton
formula, cf. Powell [15] or Stoer [30],

r B B
Byt = By + 4x9x DrPrPy Dk 7 (12)

pPEar i Bibk
where qr = Vo L(Tgi1, up) — Vo Ll(xg, ur) and py = x5 — x. Special safeguards guar-
antee that pl g, > 0 and that thus all matrices By, remain positive definite provided that
By is positive definite. Formula (12) is extremely sensitive subject to the accuracy by
which partial derivatives are provided. Worst of all, we use them only for computing the
difference vector ¢, by which we introduce additional truncation errors.

A frequently proposed remedy is to restart the BFGS-update algorithm (12) by re-
placing the actual matrix By by a scalar multiple of the initial matrix By or any similar
one, if more information is available. One possibility is to multiply a special scaling factor
with the identity matrix, i.e., to let By = 41 for selected iterates k, where

- pf%
prk

and where I denotes the identity matrix, see for example Liu and Nocedal [10].

(13)

3 Numerical Results for 306 Test Problems under
Random Noise

Our numerical tests use the 306 academic and real-life test problems published in Hock
and Schittkowski [9] and in Schittkowski [21]. The usage of the corresponding Fortran
codes is documented in Schittkowski [26]. The test examples are provided with solutions,
either known from analytical investigations by hand or from the best numerical data found
so far.

The Fortran implementation of the SQP method introduced in the previous section,
is called NLPQLP, see Schittkowski [27]. The code is frequently used at academic and
commercial institutions. NLPQLP is prepared to run also under distributed systems,
but behaves in exactly the same way as the serial version, if the number of processors
is set to one. Functions and gradients must be provided by reverse communication and
the quadratic programming subproblems are solved by the primal-dual method of Gold-
farb and Idnani [7] based on numerically stable orthogonal decompositions, see Schit-
tkowski [24]. NLPQLP is executed with termination accuracy 1077 and a maximum
number of 500 iterations.

First we need a criterion to decide whether the result of a test run is considered as a
successful return or not. Let € > 0 be a tolerance for defining the relative accuracy, zy
the final iterate of a test run, and x* the supposed exact solution known from the test
problem collection. Then we call the output a successful return, if the relative error in
the objective function is less than e and if the maximum constraint violation is less than
€2, ie., if

fzp) = f(@*) <elf(a®)], if f(z7) # 0 (14)
or
flay) <e, if f(z) =0 (15)
and
r(aze) = lg(@r) o <€, (16)
where ||...||c denotes the maximum norm and g¢;(z;)~ = min(0, g;(zx)), j > m., and
gj(xx)” = g;(x)) otherwise.

We take into account that a code returns a solution with a better function value than
x* subject to the error tolerance of the allowed constraint violation. However, there is still
the possibility that an algorithm terminates at a local solution different from the known
one. Thus, we call a test run a successful one, if the internal termination conditions are
satisfied subject to a reasonably small tolerance and if

flaw) = f(@7) = €| f(a)], if f(z7) # 0 (17)

or
flzy) > €, if f(z*)=0 (18)
and if (16) holds.
For our numerical tests, we use ¢ = 0.01 to determine a successful return, i.e., we
require a relative final accuracy of one per cent.
Since analytical derivatives are not available for all problems, partial derivatives are
approximated by forward differences,

0 1
5o S~ (f e — 1)) | (19)
Here, n; = nmax(107°, |z;|) and e; is the i-th unit vector, i = 1,...,n. The tolerance 7

is set to = 1,2, where n,, is a guess for the accuracy by which function values are

computed, i.e., either machine accuracy in case of analytical formulae or an estimate of
the noise level in function computations. In a similar way, derivatives of constraints are
approximated.

Higher order formulae are available, but require too many additional function eval-
uations for making them applicable for complex simulation systems by which function
values are retrieved. Moreover, they often do not yield better numerical results, at least
for our numerical tests.

In the subsequent table, we use the notation

Nsuce - number of successful test runs (according to above definition)
Nfune - average number of function evaluations
Ngrad - average number of gradient evaluations or iterations, respectively

To get N pune OF Ngraa, We count each evaluation of a whole set of function or gradient
values, respectively, for a given iterate x;. However, the additional function evaluations
needed for gradient approximations are not counted for ny,,.. Their average number is
N fune for the forward difference formula. One gradient computation corresponds to one
iteration of the SQP method.

To test the stability of the SQP code, we add randomly generated noise to all function
values. Non-monotone line search is applied with a queue length of p = 40 in error
situations, and the line search calculation by Algorithm 2.1 is used. The BFGS quasi-
Newton updates are restarted with pl if a descent direction cannot be computed, with
p=10%

To compare the different stabilization approaches, we apply three different scenarios
how to handle error situations, which would otherwise lead to early termination,

- monotone line search, no restarts (p =0, p = 0),
- non-monotone line search, no restarts (p = 0, p = 40),
- non-monotone line search and restarts (p = 10, p = 40).

The corresponding results shown in Table 1, are evaluated for increasing random
perturbations (e...). More precisely, if v denotes a uniformly distributed random number

p=0,p=0 p=0,p=40 p=10% p =40

€err Nsuce Nfunc MNgrad Nsuce MNfunc MNgrad Nsuce Nfunc TNgrad
0 306 36 22 306 37 22 306 37 22
10712 304 40 23 306 66 26 306 66 26
10719 301 45 24 305 72 28 306 72 29
1078 276 o8 26 302 103 31 304 120 32
1076 248 7 30 295 167 40 302 222 49
1074 178 97 30 273 220 43 295 379 62
1072 92 163 36 224 308 48 279 630 78

Table 1: Test Results for 306 Academic Test Problems

between 0 and 1, we replace f(xy) by f(zg)(1+€e(2v—1)) at each iterate xy. In the same
way, restriction functions are perturbed. The tolerance for approximating gradients, 7,,,
is set to the machine accuracy in case of €., = 0, and to the random noise level otherwise.

The Fortran codes are compiled by the Intel Visual Fortran Compiler, Version 11.0,
64 bit, under Windows 7 and Intel(R) Core(TM) i7 CPU 860, 2.8 GHz, with 8 GB RAM.

The numerical results are surprising and depend heavily on the new non-monotone
line search strategy and the additional stabilization procedures. We are able to solve
about 90 % of the test examples in case of extremely noisy function values with at most
one correct digit in partial derivative values. However, the stabilization process is costly.
The more test problems are successfully solved, the more iterations, especially function
evaluations, are needed.

4 Numerical Results for Semi-Linear Elliptic Control
Problems with Slow Convergence

In some situations, the convergence of an SQP method becomes quite slow, e.g., in case of
badly scaled variables or functions, inaccurate derivatives, or inaccurate solutions of the
quadratic program (4). In these situations, errors in the search direction or the partial
derivatives influence the update procedure (12) and the quasi-Newton matrices By are
getting more and more inaccurate.

Scaled restarts as described in Section 2, see (13), are recommended, if convergence
turns out to become extremely slow, especially caused by inaccurate partial derivatives.
To illustrate the situation, we consider a few test runs where the examples are generated
by discretizing a two-dimensional elliptic partial differential equation by the five-star
formula, see Maurer and Mittelmann [11, 12]. The original formulation is that of an
optimal control problem, and state and control variables are both discretized. The test
problems possess a different numerical structure than those used in the previous section,

10

problem n Me fx*)

EX1 722 361 0.45903 - 1071
EX2 722 361 0.40390 - 1071
EX3 722 361 0.11009

EX4 798 437 0.75833 - 1071
EX5 798 437 0.51376 - 1071

Table 2: Elliptic Control Problems

i.e., a large number variables and weakly nonlinear, sparse equality constraints, and are
easily scalable to larger sizes. First partial derivatives are available in analytical form.

From a total set of 13 original test cases, we select five problems which could not be
solved by NLPQLP as efficiently as expected with standard solution tolerances, especially
if we add some noise. Depending on the grid size, in our case 20 in each direction, we
get problems with n = 722 or n = 798 variables, respectively, and m, = 361 or m, = 437
nonlinear equality constraints. There are no nonlinear inequality constraints. Table 2
contains a summary including the best known objective function values subject to an
optimal solution vector z*. The maximum number of iterations is limited by 500, and all
other tolerances are the same as before.

Note that the code NLPQLP is unable to take sparsity into account. With an SQP-
IPM solver being able to handle sparsity, it is possible to solve the same test problems
successfully with a fine grid leading to 5.000.000 variables and 2.500.000 constraints, see
Sachsenberg [17].

Table 3 shows the number of iterations or gradient evaluations, respectively, for three
sets of test runs and different noise levels. Since we have analytical derivatives, we add
the perturbations to function as we did for the first set of test runs, and to all partial
derivative values. For uniformly distributed random numbers v between 0 and 1, we add
1+ é€er (20 —1) to f(zy) and Of (xy)/O0x; for each iterate x and ¢ = 1, ..., n. In the same
way, restriction functions and their derivatives are perturbed. We consider three different
scenarios defined by €., = 0, €0 = 1075, and €., = 107*. The obtained objective
function values coincide with those of Table 2 to at least seven digits with one exception.
For one test run without scaling, but noisy function and gradient values, the upper bound
of 500 iterations is reached. But also in this case, four digits of the optimal function value
are correct. The queue length for non-monotone line search is set to 40 and the parameter
for internal restarts in error cases is set to p = 10%.

We apply different strategies for restarting the BFGS update, i.e., By,

11

noise scaling EX1 EX2 EX3 EX4 EXb5

none 64 109 88 113 212
inatial 64 108 75 108 202
€err = 0 adaptive 14 13 14 16 26
7-step 14 13 14 23 29
15-step 20 20 21 25 38
none 64 109 88 110 385
initial 64 108 83 115 313
€err = 1070 adaptive 14 17 18 60 35
7-step 17 13 15 45 31
15-step 20 20 29 26 39
none 74 111 104 178 500
mitial 63 116 102 171 397
€err = 107 adaptive 30 81 43 106 42
7-step 21 32 52 53 34
15-step 48 30 29 25 57

Table 3: Elliptic Control Problems, Number of Iterations

- no scaling, i.e., By =1,

- initial scaling, i.e., the update procedure is started at By = y11, see (13),
- By is reset if v, < /€, where ¢, is the termination accuracy,

- By is reset every 7th step,

- By is reset every 15th step.

For test runs without or only initial scaling, there are only marginal difference between
unperturbed and perturbed function and derivative values. On the other hand, adaptive
and periodic scaling reduces the number of iterations significantly. The best results are
obtained for periodic scaling after 7 iterations. However, the number of test problems is
too small and their mathematical structure is too special to retrieve general conclusions.

5 Conclusions

We present a modification of an SQP algorithm designed for solving nonlinear program-
ming problems with noisy function values. A non-monotone line search is applied which
allows an intermediate increase of a merit function. Scaled restarts are performed in error
situations, i.e., in situations which would otherwise lead to false terminations. Numerical
results indicate extreme stability and robustness on a set of 306 standard test problems.
We are able to solve about 90 % of a standard set of 306 test examples in case of ex-
tremely noisy function values with relative accuracy of 1 % and numerical differentiation

12

by forward differences. In the worst case, only one digit of a partial derivative value is
correct. On the other hand, the original version with monotone line search and without
restarts solves only 30 % of these problems under the same test environment. For all test
runs, we use a termination accuracy of 10~7 which is not adapted to the noise level.

In real-life applications with complex simulation procedures, perturbed function values
are not unusual. Analytical gradients are often not available and a forward difference
formula is applied to approximate partial derivatives. However, the efficiency of SQP
methods depends more on the accuracy of partial derivatives than on the accuracy by
which function values are computed. One reason is the updating procedure of an internal
quasi-Newton method which requires computation of differences of Lagrangian gradients
at neighbored iterates.

Another difficulty is that the convergence of an SQP algorithm is sometimes slow, i.e.,
the code needs a large number of iterations until termination. There are many possible
reasons, but in most situations badly scaled problem functions or variables lead to long
iteration cycles. It is often recommended to perform a restart as soon as slow termination
is observed. To test this situation, the previously used set of 306 test examples is not
appropriate and we use a small set of relatively large problems obtained by discretizing
semi-linear elliptic control problems. Our numerical results indicate that scaled adaptive
or periodic restarts with a short cycle length, say between 7 and 15, are appropriate to
improve convergence speed significantly.

Our presented numerical results depend on the setting of parameters, by which we
control the test environment, e.g., restart scaling (p), queue length (p), optimality check
(€), ..., and the execution of the SQP code, e.g., termination accuracy (€;), maximum
number of iterations (500). Much more parameter values are fixed inside the SQP code.
An appropriate choice influences numerical tests on the academic level, but also the prac-
tical usage. As certain values might increase reliability (ng...) and, vice versa, decrease
efficiency (n4rq4), other values might have the opposite effect. It is not possible to find the
"best” combination of all settings, since they strongly depend on the numerical structure
of the underlying optimization problem. Even for the underlying two test problem sets,
one would need a large number of additional numerical results. Their complete docu-
mentation would break the limitations of a publication, and very likely not lead to any
further insight. To a certain extend, the reader should accept that there have been initial
experiments by which a suitable test frame was fixed.

References

[1] Armijo L. (1966): Minimization of functions having Lipschitz continuous first par-
tial derivatives, Pacific Journal of Mathematics, Vol. 16, 1-3

[2] Boggs P.T., Tolle J.W. (1995): Sequential quadratic programming, Acta Numerica,
Vol. 4, 1-51

13

3]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Bongartz 1., Conn A.R., Gould N., Toint Ph. (1995): CUTE: Constrained and
unconstrained testing environment, Transactions on Mathematical Software, Vol.
21, No. 1, 123-160

Dai Y.H. (2002): On the nonmonotone line search, Journal of Optimization Theory
and Applications, Vol. 112, No. 2, 315-330

Dai Y.H., Schittkowski K. (2008): A sequential quadratic programming algorithm
with non-monotone line search, Pacific Journal of Optimization, Vol. 4, 335-351

Gill P.E., Leonard M.W. (2003): Limited-memory reduced-Hessian methods for un-
constrained optimization, STAM Journal on Optimization, Vol. 14, 380—401

Goldfarb D.; Idnani A. (1983): A numerically stable method for solving strictly
convex quadratic programs, Mathematical Programming, Vol. 27, 1-33

Grippo L., Lampariello F., Lucidi S. (1986): A nonmonotone line search technique
for Newtons’s method, SIAM Journal on Numerical Analysis, Vol. 23, 707-716

Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer

Liu D.C., Nocedal J. (1989): On the limited memory BFGS method for large scale
optimization, Mathematical Programming, Vol. 45, 503-528

Maurer H., Mittelmann H. (2000): Optimization techniques for solving elliptic con-
trol problems with control and state constraints: Part 1. Boundary control, Compu-
tational Optimization and Applications, Vol. 16, 29-55

Maurer H., Mittelmann H. (2001): Optimization techniques for solving elliptic con-
trol problems with control and state constraints: Part 2: Distributed control, Com-
putational Optimization and Applications, Vol. 18, 141-160

Nocedal J. (1980): Updating quasi-Newton matrices with limited storage, Mathe-
matics of Computation, Vol. 35, 773-782

Powell M.J.D. (1978): A fast algorithm for nonlinearly constraint optimization cal-
culations, in: Numerical Analysis, G.A. Watson ed., Lecture Notes in Mathematics,
Vol. 630, Springer

Powell M.J.D. (1978): The convergence of variable metric methods for nonlinearly
constrained optimization calculations, in: Nonlinear Programming 3, O.L. Man-
gasarian, R.R. Meyer, S.M. Robinson eds., Academic Press

Rockafellar T. (1974): Augmented Lagrangian multiplier functions and duality in
nonconvex programming, SIAM Journal of Control, Vol. 12, 268-285

14

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

Sachsenberg, B. (2010): NLPIP: A Forrtan implementation of an SQP Interior
Point algorithm for solving large scale nonlinear optimization problems - user’s
guide, Report, Department of Computer Science, University of Bayreuth

Schittkowski K. (1980): Nonlinear Programming Codes, Lecture Notes in Economics
and Mathematical Systems, Vol. 183 Springer

Schittkowski K. (1983): On the convergence of a sequential quadratic programming
method with an augmented Lagrangian search direction, Optimization, Vol. 14, 197-
216

Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained non-
linear programming problems, Annals of Operations Research, Vol. 5, 485-500

Schittkowski K. (1987): More Test Examples for Nonlinear Programming, Lecture
Notes in Economics and Mathematical Systems, Vol. 182, Springer

Schittkowski K. (1988): Solving nonlinear least squares problems by a general pur-
pose SQP-method, in: Trends in Mathematical Optimization, K.-H. Hoffmann, J.-
B. Hiriart-Urruty, C. Lemarechal, J. Zowe eds., International Series of Numerical
Mathematics, Vol. 84, Birkhauser, 295-309

Schittkowski K. (2002): Numerical Data Fitting in Dynamical Systems, Kluwer
Academic Publishers, Dordrecht

Schittkowski K. (2003): QL: A Fortran code for convex quadratic programming -
user’s guide, Report, Department of Mathematics, University of Bayreuth, 2003

Schittkowski K. (2008): An active set strategy for solving optimization problems with
up to 200,000,000 nonlinear constraints, Applied Numerical Mathematics, Vol. 59,
2999-3007

Schittkowski K. (2008): An updated set of 306 test problems for monlinear pro-
gramming with validated optimal solutions - user’s guide, Report, Department of
Computer Science, University of Bayreuth

Schittkowski K. (2009): NLPQLP: A Fortran implementation of a sequential
quadratic programming algorithm with distributed and non-monotone line search
- user’s guide, version 3.0, Report, Department of Computer Science, University of
Bayreuth

Schittkowski K., Zillober C., Zotemantel R. (1994): Numerical comparison of non-
linear programming algorithms for structural optimization, Structural Optimization,
Vol. 7, No. 1, 1-28

15

[29] Spellucci P.: DONLP2 users guide, Technical University at Darmstadt, Department
of Mathematics, Darmstadt, Germany

[30] Stoer J. (1985): Foundations of recursive quadratic programming methods for solv-
ing nonlinear programs, in: Computational Mathematical Programming, K. Schitt-
kowski, ed., NATO ASI Series, Series F: Computer and Systems Sciences, Vol. 15,
Springer

[31] Toint P.L. (1996): An assessment of nonmontone line search techniques for uncon-
strained optimization, STAM Journal on Scientific Computing, Vol. 17, 725-739

[32] Toint P.L. (1997): A nonmonotone trust-region algorithm for nonlinear optimization
subject to convexr constraints, Mathematical Programming, Vol. 77, 69-94

[33] Wolfe P. (1969): Convergence conditions for ascent methods, SIAM Review, Vol.
11, 226-235

16

