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Abstract: A numerical method is presented to determine parameters in a system of non-
linear equations in the following sense: Proceeding from given experimental data, e.g., ob-
servation times and measurements, the minimum least-squares distance of the measured
data from a fitting criterion depending on the solution of a system of nonlinear equations
is to be computed. Specifically coupled mass equilibrium models are described in more de-
tail that are used in pharmaceutical applications for receptor-ligand binding studies. They
are used for instance for the radioimmunological determination of Fenoterol or related sub-
stances. Numerical results based on laboratory data are included to test the robustness of
the algorithm implemented.
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1. Introduction

Parameter estimation plays an important role in many natural science and other disci-
plines. The key idea is to estimate unknown parameters in the mathematical model that
describes the real-life situation, by minimizing the distance of some known experimental
data from the computed model values. Thus also model parameters that cannot be mea-
sured directly, can be estimated by a least-squares fit and analysed subsequently.

The model to be considered now consists of a system of nonlinear equations that depend
on some parameters to be estimated, and an independent time variable. Only for illustration
purposes we denote the independent model variable as the time variable of the system and
the dependent data as measurement values of an experiment. On the other hand, both terms
may have any other meaning within a model depending on the underlying application.

It is assumed that the system of nonlinear equations is solvable and differentiable with
respect to the system variables and the parameters to be estimated on the whole domain.
To be able to solve the system uniquely and to get derivatives in an efficient and numerically
stable way, also regularity of the system will be assumed.

The numerical solution of the problem is then achieved in two steps. First the sys-
tem of nonlinear equations is solved to get model function values and, in particular, the
corresponding derivatives. A fitting criterion depending on the system variables and the
independent optimization parameters is formulated subsequently. The resulting data are
then inserted into a standard parameter-estimation code to compute the least-squares fit.
Upper and lower bounds for the parameters to be estimated can be taken into account.

One typical application, to be described in more detail, is the coupled mass equilibrium
model consisting of antibodies with one binding site or with several mutually independent
binding sites of equal intrinsic affinity, and monovalent antigens, see, e.g., Bürgisser, Han-
cock, Lefkowitz, De Lean (1980) or De Lean, Hancock, Lefkowitz (1981) for more details
about the model. The regularity of this system is easily verified. A possible application is
the radioimmunological determination of Fenoterol. From this application several test cases
are derived to show that the numerical solution is by no means trivial.

In Section 2 the general mathematical least-squares problem is outlined, in particular
the evaluation of gradients. Some details on the numerical implementation are summarized
in Section 3. The coupled mass equilibrium model is described in Section 4 and numerical
results are presented in Section 5.
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2. The Mathematical Model

The basic mathematical model is the least-squares problem, i.e., the problem of mini-
mization of a sum of squares of nonlinear functions of the following form:

min
∑l

i=1 fi(x)2

x ∈ Rn : xl ≤ x ≤ xu

. (1)

Here we assume that the parameter vector x is n-dimensional and that all nonlinear functions
fi(x) are continuously differentiable with respect to x on the feasible domain defined by upper
and lower bounds on the variables.

In the following we restrict all investigations to parameter estimation problems, where
one model function is available with one additional variable t called time. Proceeding now
from l measurements of the form

(ti, yi) , i = 1, ..., l ,

where l time values and l corresponding measurement values are defined, and a model func-
tion h(x, t), we get the above problem formulation by setting

fi(x) = h(x, ti) − yi .

Then the underlying idea is to minimize the distance between the model function at
certain time points and the corresponding measurement values. This distance is denoted the
residual of the problem. In the ideal case the residuals are zero indicating a perfect fit of
the model function by the measurements. Again we have to assume that function h(x, t) is
differentiable for all x within the rectangle xl ≤ x ≤ xu.

Since for practical applications additional weighting factors are highly useful, we instead
use the notation

fi(x) = wi(h(x, ti) − yi) (2)

with suitable weighting factors wi, i = 1, ..., l.
Our special goal is to estimate parameters in systems of nonlinear equations, which may

depend also on the time variable. In this case the model function h(x, t) depends in addition
on the solution vector of a system of nonlinear equations, i.e.,

h(x, t) = hs(x, z(x, t), t) , (3)

where z(x, t) ∈ Rm is implicitely defined by the solution of the system

s1(x, z, t) = 0
z ∈ Rm : · · ·

sm(x, z, t) = 0
. (4)
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The system functions s1, . . . , sm are assumed to be continuously differentiable with re-
spect to variables x and z. Moreover we require the regularity of the system, i.e., that the
system is solvable and that the derivative matrix

(
∂si(x, z, t)

∂zj

)

has full rank for all x with xl ≤ x ≤ xu and for all z, for which a solution z(x, t) of
(4) exists. Consequently the function z(x, t) is differentiable with respect to all x in the
feasible domain. Now let t be fixed and let z(x, t) a solution of (4). If we denote S(x, z) :=
(s1(x, z, t), . . . , sm(x, z, t))T for all x and z, we get from the identity S(x, z(x, t)) = 0, which
is to be satisfied for all x, the derivative

∇xS(x, z(x, t)) + ∇zS(x, z(x, t))∇z(x, t) = 0 .

Here ∇xS(x, z) and ∇zS(x, z) denote the partial derivatives of S(x, z) with respect to the
parameters x and z, respectively. In other words, the desired functional matrix ∇z(x, t) is
obtained from the linear system

∇xS(x, z(x, t)) + ∇zS(x, z(x, t))V = 0 (5)

where V is an m × n-matrix.
Note that we describe here the implicit function theorem. Since ∇zS(x, z(x)) is nonsin-

gular, the above system is uniquely solvable.
Given any parameter vector x as provided by the used optimization algorithm, and an

experimental time value ti, system (4) is solved yielding a solution vector zi(x) := z(x, ti)
that is then inserted into the function hs(x, z, t) to evaluate a model function value

fi(x) = wi(h
s(x, zi(x), ti) − yi) (6)

where yi denotes experimental data, i = 1, . . . , l, The corresponding gradient is computed
from

∇fi(x) = wi(∇xh
s(x, zi(x), ti) + Vi∇zh

s(x, zi(x), ti)) (7)

where Vi solves the linear matrix system

∇xS(x, zi(x)) + ∇zS(x, zi(x))V = 0 (8)

for all i = 1, ..., l.
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3. Numerical Implementation

First let us consider the nonlinear least-squares problem (1) in its general notation.
Because of the standard formulation, many different numerical algorithms and computer
codes are available and can be used. It was decided to implement two different subroutines
giving the user the opportunity to switch from one code to the other whenever an algorithm
is unable to find a solution in a proper way:

1. Subroutine DN2GB was developed by Dennis, Gay and Welsch (1981a, 1981b). As
part of the PORT library, the code is widely used in practice, well tested and very
efficient for the type of application we are considering. The algorithm is a variation
of Newton’s method and capable to handle upper and lower bounds on the variables.
Part of the Hessian is computed directly and part is approximated by a quasi-Newton
update method. In certain situations the algorithm reduces to a Gauss-Newton or a
Levenberg-Marquardt algorithm. The method is stabilized by a trust-region technique
along with an adaptive choice of a model Hessian to achieve convergence.

2. The second algorithm implemented, is the code DFNLP developed by Schittkowski
(1988). The basic idea is to introduce additional variables and equality constraints, and
to solve the resulting constrained nonlinear programming problem by the sequential
quadratic programming algorithm NLPQL of Schittkowski (1985/86). It can be shown,
that typical features of a special purpose method are retained, i.e., the combination of a
Gauss-Newton and a quasi-Newton search direction, see Schittkowski (1988) for details.
The additional variables and constraints are substituted in the quadratic programming
subproblem, so that calculation time is not increased by this approach.

Any subroutine for solving smooth nonlinear least-squares problems requires the eval-
uation of model function values and of gradient values. Whenever an iterate xk of the
least-squares algorithm is given, we first have to solve l nonlinear systems of equations

s1(xk, z, ti) = 0
z ∈ Rm : · · ·

sm(xk, z, ti) = 0
(9)

for i = 1, . . . , l. By inserting the solution z(xk, ti) into (3) and (2), we then get the required
model function values fi(xk), i = 1, . . . , l. The starting value x0 must be provided by the
user.

The nonlinear systems of equations of above form are treated as general optimization
problems, where we minimize an artificial objective function

1

τi
‖z‖2
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subject to the constraints (9). The scaling parameter τi := max(1, ti) is introduced based on
numerical experience, since for the application under consideration the time parameters that
are also part of the system equation differ in their oder of magnitude drastically. The formu-
lation of a nonlinear programming problem is more flexible and allows to detect situations,
where (9) is contradictious or where (9) does not possess a unique solution.

The resulting nonlinear programming problem is solved by the FORTRAN code NLPQL,
see Schittkowski (1985/86). The algorithm proceeds from a successive quadratic approxima-
tion of the Lagrangian function and linearization of constraints. To get a search direction,
a quadratic programming problem must be solved in each iteration step. A subsquent line
search stabilizes the algorithm. The function and gradient values with respect to each iter-
ation variable are part of the problem formulation and must be provided by the user. Also
the initial values required for the start of an optimization cycle must be predetermined by
the user in a suitable way. They may depend on the parameters of the outer least-squares
problem.

As mentioned above, the parameter-estimation algorithm DFNLP does also require the
execution of subroutine NLPQL for solving the modified nonlinear programming problem.
To avoid execution conflicts, DFNLP uses reverse communication for evaluating function
and gradient values, cf. the program documentation for details.

The evaluation of gradients of the model functions ∇fi(xk) at certain iterates xk is
required by both least-squares algorithms. If a solution z(xk, ti) of (9) is not known from a
previous function call, system (9) must be solved again by NLPQL. Subsequently the linear
system (8) is solved in a numerically stable way by the code H12 as published in Lawson and
Hanson (1974). The code is based on a numerically stable Householder transformation of
∇zS(xk, z(xk, ti)), cf. (8). By inserting the solution into (7) we obtain the desired gradient
value.

The numerical algorithm to estimate parameters in systems of nonlinear equations as
described above, is implemented in double precision FORTRAN in form of two different
programs that can be executed completely independently of each other. The corresponding
input files differ only in a few parameters that control certain options of the algorithms.
Nonlinear model functions s1(x, z, t), . . . , sm(x, z, t), starting values z0(x) for solving (4) and
the fitting criterion hs(x, z, t) must be provided by the user in form of a separate subroutine.
Moreover all gradients of the model functions with respect to x and z are to be evaluated
within a user written subroutine.

The usage of the codes is described in Schittkowski (1992). Since, however, the model
part of both codes is identical, we use the notation ’SYSFIT’ throughout this paper to
identify both approaches. The codes possess the following additional features:

1. Scaling: For all practical parameter-estimation problems, scaling of model function
values is very important because of the variation of the experimental numerical data.
Thus SYSFIT proceeds from scaling parameters

wi := wiwi , i = 1, . . . , l
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see (6), where wi is an individual scaling value for the i-th experiment and wi := yi
e

a computed scaling factor based on an exponent e given by the user, where e may be
any real number. Alternatively a user may require that the constant scaling factor

wi :=

⎛
⎝ l∑

j=1

y2
j

⎞
⎠

−1/2

is to be taken into account for the whole measurement set.

2. Statistical data: Proceeding from the assumption that the model is sufficiently linear
in a neighbourhood of an optimal solution vector and that all experimental data are
Gaussian and independent, some statistical data can be evaluated:

• Variance/covariance matrix of the problem data

• Correlation matrix of the problem data

• Estimated variance of residuals

• Confidence intervals for the individual parameters subject to the significance levels
1%, 5% or 10%, respectively

3. Plot data: After obtaining a numerical solution that satisfies the termination condi-
tions, all measurement data and a large number of model function values at equidistant
time points are written on a file together with some additional plot information. The
data can be exploited to compute plots directly on a suitable device. Logarithmic time
values are stored on request.
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4. The Coupled Mass Equilibrium Model

The relationship between antibody and antigen or antibody and antigen determinant,
i.e., ligand, can be described by a simple mass equilibrium if the following assumptions are
satisfied, see, e.g., Rominger and Albert (1985):

• The high affinity between antibodies belong to the immunoglobulin (Ig)G class.

• The two binding sites of these antibodies have the same intrinsic affinity and are
independent of each other.

• For concentrations in the picomolar range the activity of the reactants is equal to their
concentration.

• The antibody population is uniform.

Under these assumptions, the coupling of me antibodies with one binding site and ne

monovalent antigens is described by the equation

xij = Ki,jrilj (10)

for i = 1, . . . , me and j = 1, . . . , ne, where ri and lj are given by

ri := Ri −
ne∑

k=1

xik (11)

and

lj := Lj −
me∑
k=1

xkj , (12)

see also Feldman (1972). Here we proceed from the mass conservation law and use the
notation

Ri - total concentration of i-th antibody
Lj - total concentration of j-th antigen
xij - concentration of the i-th antibody and the j-th antigen in equilibrium
Kij - association constant between the i-th antibody and the j-th antigen

By insertion, the above system is easily transformed into the equivalent system of equa-
tions

ri(1 +
ne∑

k=1

Kiklk) − Ri = 0, i = 1, . . . , me , (13)

lj(1 +
me∑
k=1

Kkjrk) − Lj = 0, j = 1, . . . , ne .
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The system is a set of me+ne nonlinear equations and me+ne unknowns ri, i = 1, . . . , me

and lj, j = 1, . . . , ne. If we set m := me + ne,

z = (r1, . . . , rme, l1, . . . , lne)
T ,

and if we denote the functions s1, . . . , sm in the corresponding way, we obtain system (4).
To be able to solve (4) uniquely and to compute the gradient values of fi(x) for i =

1, . . . , l, we need the regularity of system (4), i.e., that the derivative matrix of (13) is
nonsingular. The functional matrix with respect to the variables ri, i = 1, . . . , me, and lj ,
j = 1, . . . , ne, is given by

(
DK,l : DrK
DlK

T : DK,r

)
, (14)

where K is an me × ne matrix with elements Kij , i = 1, . . . , me, j = 1, . . . , ne, and DK,l,
DK,r, Dl, Dr are the diagonal matrices

DK,l := diag(1 +
ne∑

k=1

K1klk, . . . , 1 +
ne∑

k=1

Kmeklk) ,

DK,r := diag(1 +
me∑
k=1

Kk1rk, . . . , 1 +
me∑
k=1

Kknerk) ,

Dr := diag(r1, . . . , rme) ,

Dl := diag(l1, . . . , lne) .

If we compare now the sums of the first me columns of (14) with the corresponding
diagonal element, we get the estimate

1 +
ne∑

k=1

Kiklk >
ne∑

k=1

Kiklk (15)

for i = 1, . . . , me. In the same way we obtain for the column sums of the second part

1 +
me∑
k=1

Kkjrk >
me∑
k=1

Kkjrk (16)

for j = 1, . . . , ne. Both (15) and (16) show that (14) is a diagonal dominant matrix provided
that all data are nonnegative, and we get the following theorem.

Theorem: Assume that the data Kij, lj and rj are nonnegative for i = 1, . . . , me, j =
1, . . . , ne. Then the functional matrix of the left hand side of (13) is nonsingular.
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The so-called time variable is t := Lne . The unknown parameter x to be estimated
consists of the association constants Kij , i = 1, . . . , me, j = 1, . . . , ne, and the total concen-
trations Ri for i = 1, . . . , me and Lj for j = 1, . . . , ne−1. Thus we get n := mene+me+ne−1
parameters that must be computed by a least-squares fit.

However when applying the model just described to practical situations, e.g., the radioim-
munological determination of Fenoterol, it turns out that the time parameters Lne varies in
the order of magnitude drastically. To prevent numerical instabilities, it is recommended to
scale the last equation of (13) by Lne , yielding

lne

Lne

(1 +
me∑
k=1

Kknerk) − 1 = 0 , (17)

which is used instead of the original equation whenever Lne > 1.
For the same reason it is not recommended to use the result of a previous numerical

solution of (13) whenever Lne is changed. Instead it is proposed to insert

(R1, . . . , Rme , L1, . . . , Lne−1, 1)T (18)

in the numerical algorithm solving system (13) or (4), respectively.
The fitting criterion, i.e., the model function hs(x, t) in (3) is given by the expression

hs(x, z, t) = L1 − l1 =
me∑
k=1

xk1 . (19)

We consider two examples in form of coupled mass equilibrium problems, that are fre-
quently formulated in practice. The first model consists of one receptor and two ligands,
i.e., me = 1 and ne = 2. Proceeding from (13) we obtain the system

r1(1 + K11l1 + K12L2l
�
2) − R1 = 0 ,

l1(1 + K11r1) − L1 = 0 ,

l�2(1 + K12r1) − 1 = 0 .

The system parameters are r1, l1 and l�2, and the parameters to be estimated, are K11,
K12, R1 and L1. L2 is the independent model or time variable to be filled with experimental
data. The fitting criterion is L1 − l1 and we use the starting values r1 = R1, l1 = L1 and
l�2 = 1.0 for solving the system of nonlinear equations. The last equation is scaled according
to (17) by l�2 := l2/L2.

The second example proceeds from two receptors and two ligands, i.e. me = 2 and ne = 2.
We use (13) and get the system

r1(1 + K11l1 + K12L2l
�
2) − R1 = 0 ,
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r2(1 + K21l1 + K22L2l
�
2) − R2 = 0 ,

l1(1 + K11r1 + K21r2) − L1 = 0 ,

l�2(1 + K12r1 + K22r2) − 1 = 0 ,

where the last equation is scaled (17) and where we define l�2 := l2/L2. The system parameters
are r1, r2, l1 and l�2, the optimization parameters K11, K12, K21, K22, R1, R2 and L1. L2 is
the independent time variable, now combined through l�2 with l2. Fitting criterion is L1 − l1
and starting values for solving the nonlinear system are (R1, R2, L1, 1)T .

In particular these small-scale models have been studied in the literature, see Bürgisser,
Hancock, Lefkowitz, De Lean (1980), De Lean, Hancock, Lefkowitz (1981) and Rominger,
Albert (1985), and are regularly used in testing new substances. Also some software is
available for the special application, e.g., the LIGAND system of Munson and Rodbard
(1980).
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5. Numerical Results

Both versions of the SYSFIT program differing by the two optimization methods im-
plemented, are designed to solve parameter-estimation problems in arbitrary systems of
nonlinear equations. Thus the user has to provide his model functions in form of a separate
FORTRAN subroutine.

On the other hand the special mass equlilibrium model describing receptor-ligand binding
studies as outlined in the previous section, can be implemented easily and the resulting
executable program is running daily in a chemical laboratory. Because of this special type
of application that motivated the development of SYSFIT all test cases are coupled mass
equilibrium problems mostly with real life experimental data.

To facilitate the input of data and the formulation of the nonlinear system of equations,
an easy-to-use interface was developed under the name EASY SYS, see Schittkowski (1992)
for details. The user interface is running under MS-DOS, although the numerical programs
executed, can be transferred to any other system as well. Besides of the internal binding
models that are completely described by the number me of receptors and the number ne of
ligands also other nonlinear systems of equations and fitting criteria can be specified through
the PCOMP-language, see Dobmann, Liepelt, and Schittkowski (1994), that interpretes
statements in a FORTRAN-like syntax und evaluates gradients automatically. Consequently
we do not need to compile and link the program when changing the model. EASY SYS was
used for preliminary analysis and the preparation of plot data.

All numerical test results have been obtained on a HP-Apollo workstation running under
HP-UX. The codes are implemented in double precision FORTRAN.

Table 1 summarizes all test cases identified by a name and the number of receptors and
ligands. Moreover the number of experiments, the number of multiple measurements and
the range for the Lne-values is reported. Note that Lne plays the role of the time variable,
and the table shows that their order of magnitude varies drastically. By the relatively low
number of receptors and ligands, respectively, the most frequent practical situations are
reflected.

The measurement data are in most cases real-life experiments. In some situations the
data are generated from predetermined parameter sets, to get also least-squares problems
with small residuals. All residuals are scaled by the inverse of the sum of squares of all
observation values yi, a frequently used scaling technique in practical applications.

The goal of the numerical tests is to get an impression on the degree of difficulty of the
least-squares problems and the robustness of the optimization algorithms. The number of
test runs is by far too small to derive any conlusions about the relative superiority of one
code over the other. Therefore all numerical tests proceed from the same starting point
x0 = (1, . . . , 1)T , which is in some cases far away from a solution of the least-squares prob-
lems. Note however, that whenever a code like SYSFIT is running routinely in a practical
environment, the users know a lot about the internal structure of the model and the exper-
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iment leading to the data to be fitted. Thus they are able to provide much better starting
points so that the inefficiencies we observe, are somewhat academic.

In Table 2 we collect the numerical results achieved. For each data set the least-squares
algorithms DN2GB of Dennis, Gay, and Welsch (1981b) and DFNLP of Schittkowski (1988)
are executed. For both codes we define one set of tolerances that is not changed within
the test series. The relative stopping tolerance for function and variable values was set to
1.0E-5 for DN2GB and the final accuracy for satisfying an optimality condition was set to
1.0E-8 for DFNLP. The maximum number of iterations, i.e., gradient evaluations, is 300 for
both algorithms. The SQP-code NLPQL of Schittkowski (1985/86) implemented to solve
the systems of nonlinear equations, uses the termination tolerance 1.0E-11 for satisfying a
Kuhn-Tucker condition, and is not allowed to make more than 50 iterations. However the
numerical tests show that the solution of systems of nonlinear equations usually requires not
more than 6 iterations with respect to the very small final accuracy.

In Table 2 we list the name of the test case, the least-squares code DN2GB or DFNLP
and the final weighted residual. The subsequent two columns list the number of function
and gradient evaluations of the outer least-squares algorithm until a termination condition
is satisfied, i.e., evaluations of function sets f1(x), . . . , fl(x) and derivatives ∇f1(x), . . . ,
∇fl(x). Finally the last column reports the termination message as generated by the least-
squares algorithm. The meaning of these parameters is listed in the following table and more
information can be retrieved from the corresponding program documentations.

code i meaning
4 relative function convergence
7 singular convergence

DN2GB 8 false convergence
9 function evaluation limit
10 iteration limit
0 optimality conditions satisfied

DFNLP 1 iteration limit
4 function evaluation limit in line search

First we observe that the numerical results differ drastically even if we have the same
underlying mathematical model and even if the experimental data seem to have more or
less the same structure. In quite a few test cases, the least-squares algorithms are unable to
reach a solution.

To get an overview about the achieved results, we summarize them in the subsequent
table. We list the average number of function and gradient evaluations for both algorithms
under the condition that the relative difference of the computed residuals is less than some
tolerance ε. Moreover the number of test runs for which the one or other algorithm got a
higher residual value, is also reported under the column nerr.
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DN2GB DFNLP
ε

nf n∇f nerr nf n∇f nerr

10.0 132.6 72.6 6 150.0 66.6 1
1.0 120.0 61.9 7 135.9 62.2 4
0.1 141.6 70.8 8 107.1 48.8 8
0.01 146.6 73.4 8 112.9 50.1 10
0.001 34.0 25.9 13 67.3 36.0 11
0.0001 14.5 11.5 15 13.7 11.2 11

To understand the interpretation of the results, consider the first row of the table. It
says that in 6 test runs, DN2GB computed a residual that is ten times bigger than the
corresponding one computed by DFNLP. On the other hand, DFNLP found only one residual
being ten times larger than the residual of DN2GB. For all other numerical solutions, mean
values are computed and listed indicating e.g. that the average number of function evalutions
of DN2GB is 72.6 against 66.6 of DFNLP.

In some of the failure situations, one algorithm satisfies its internal optimality conditions
earlier than the other. It is either possible that another local solution is approximated, or
that the curvature of the objective function is very flat in some region. In the first case, the
code terminates successfully from the viewpoint of the solution method. In the second case,
the model could be very ill-conditioned preventing the algorithm from making significant
progress close to a solution.

Also the average number of iterations is relatively large indicating that the starting point
is far away from a solution and that the least squares problems are by no means trivial. There
is no significant difference between the number of function or gradient evaluations between
the two optimization algorithms, when both approximate the same optimal solution very
closely. These are, however, the simple test cases and lead to problems which can be solved
in relatively few iterations. On the other hand the more difficult problems identified by a
larger effort to reach a solution, are also more unstable, i.e. the algorithms stop quite often
at different solution points.

Again we have to indicate the importance of initial parameter values. By exploiting
additional knowledge about the experiment and numerical experience from the past, all
these problems can be solved much more efficiently in practice.
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problem me ne l v Lmin
ne

Lmax
ne

E11-1 1 1 33 3 0.3 3.0E+4
E11-2 1 1 27 3 1.0 1.0E+9
E11-3 1 1 7 1 100.0 3.0E+3
E12-1 1 2 27 3 0.1 3.0E+5
E12-2 1 2 44 3-4 0.1 1.0E+7
E12-3 1 2 10 1 0.001 1.0E+6
E12-4 1 2 12 1 1.0 1.0E+10
E12-5 1 2 10 1 5.2 5.2E+3
E12-6 1 2 21 1 10.0 1.0E+7
E12-7 1 2 18 3 100.0 1.0E+7
E12-8 1 2 21 3 10.0 1.0E+7
E12-9 1 2 21 3 10.0 1.0E+7
E12-10 1 2 42 3 3.0 1.0E+6
E12-11 1 2 45 3 3.0 3.0E+6
E12-12 1 2 16 1 1.0 5.2E+3
E12-13 1 2 12 1 1.0 2.9E+3
E12-14 1 2 15 1 0.01 5.0E+4
E13-1 1 3 26 1 0.01 1.0E+3
E21-1 2 1 20 1 100.0 1.3E+5
E21-2 2 1 10 1 0.1 1.0E+2
E21-3 2 1 22 2 3.0 3.0E+5
E21-4 2 1 33 3 0.3 3.0E+4
E22-1 2 2 16 1 0.1 1.0E+5
E22-2 2 2 75 3 0.1 1.0E+5
E22-3 2 2 26 1 0.01 1.0E+5
E22-4 2 2 22 1 0.01 1.0E+4
E22-5 2 2 66 3 60.0 1.0E+7
E23-1 2 3 18 1 1.0 1.0E+11
E31-1 3 1 11 1 0.1 1.0E+5
E32-1 3 2 47 3-4 0.1 1.0E+7
E32-2 3 2 20 1 0.1 6.0E+3
E32-3 3 2 31 1 0.1 1.0E+11

Table 1: Test examples
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problem code r� nf n∇f i

DN2GB .31999556E-2 14 13 4
E11-1

DFNLP .31999557E-2 25 20 0

DN2GB .73164932E-1 4 4 4
E11-2

DFNLP .73164932E-1 5 5 0

DN2GB .13881922E-4 20 17 4
E11-3

DFNLP .13881924E-4 10 9 0

DN2GB .18746759E-2 25 18 7
E12-1

DFNLP .18738550E-2 282 124 0

DN2GB .18411076E-2 110 69 4
E12-2

DFNLP .18780923E-2 119 65 0

DN2GB .81951850E-4 153 72 7
E12-3

DFNLP .40521965E-3 21 15 0

DN2GB .22565179E-3 20 14 7
E12-4

DFNLP .35322154E-3 55 28 0

DN2GB .21838945E-3 246 140 7
E12-5

DFNLP .17882418E-2 816 300 1

DN2GB .38360135E-2 160 120 7
E12-6

DFNLP .38355137E-2 174 97 0

DN2GB .24333253E-2 43 22 4
E12-6

DFNLP .24184895E-2 67 35 4

DN2GB .43556653E-2 104 37 8
E12-8

DFNLP .45256660E-2 15 14 0

DN2GB .17543020E-2 68 47 4
E12-9

DFNLP .29484979E-2 39 25 0

DN2GB .33184711E-2 90 54 7
E12-10

DFNLP .41217194E-2 231 148 0

DN2GB .20182247E-2 38 26 7
E12-11

DFNLP .20182096E-2 34 25 0

DN2GB .11793656E-3 4 4 4
E12-12

DFNLP .11793658E-3 3 3 0

DN2GB .10896416E-2 385 300 10
E12-13

DFNLP .61315567E-2 38 26 0

DN2GB .20214247E-3 68 43 4
E12-14

DFNLP .24250829E-3 780 300 1

DN2GB .35496344E-2 9 7 9
E13-1

DFNLP .83539111E-6 74 48 0

Table 2: Numerical results (continued)
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problem code r� nf n∇f i

DN2GB .95882426E-2 7 5 7
E21-1

DFNLP .95881311E-2 5 5 0

DN2GB .22928501E-2 9 7 9
E21-2

DFNLP .22860469E-2 18 14 0

DN2GB .29177488E-1 9 5 9
E21-3

DFNLP .71931171E-2 20 17 0

DN2GB .38118137E-2 9 8 9
E21-4

DFNLP .33262345E-2 35 25 0

DN2GB .21259883E-6 556 300 10
E22-1

DFNLP .21844094E-3 795 300 1

DN2GB .19120880E-2 521 240 7
E22-2

DFNLP .18993610E-2 222 97 0

DN2GB .86277200E-3 599 250 9
E22-3

DFNLP .85717898E-3 63 38 0

DN2GB .10273025E-2 599 297 9
E22-4

DFNLP .10364061E-2 664 222 0

DN2GB .80301533E-1 9 6 9
E22-5

DFNLP .87379733E-3 72 50 1

DN2GB .53578544E-4 9 4 9
E23-1

DFNLP .53485176E-4 8 8 0

DN2GB .56380461E-3 9 6 9
E31-1

DFNLP .21771691E-5 79 69 0

DN2GB .20098739E-0 57 13 8
E32-1

DFNLP .34415227E-2 79 43 0

DN2GB .51722003E-1 43 7 8
E32-2

DFNLP .47775840E-3 77 39 0

DN2GB .74446523E-1 9 6 9
E32-3

DFNLP .84562137E-4 300 183 0

Table 2: Numerical results
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