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Abstract

We consider mathematical models for tubular reactors in the form of dynamic dis-
tributed parameter systems. The goal is to maximize the overall profit over a fixed
time horizon, where the number of cleaning operations, the length of the reactor
operation between successive cleanings, and the reactor feed rates for each time
interval are to be computed. We assume that product prices and consumer de-
mands are time-dependent. It must be guaranteed that the decrease of the free
cross-sectional area of the tube caused by coke deposition never exceeds a certain
limit. Moreover, there are time and position dependent constraints for the state and
control variables such as a maximum bound for the temperature. The mathemat-
ical model and the applied discretization scheme are outlined in detail. Numerical
results are presented for a case study, where optimal input feeds and maintenance
times of an acetylene reactor are computed. Of special interest is the behaviour of
the program under real-time conditions, when changes in the process data or price
and user demand functions require a restart of the calculation.

1 Introduction

The computation of optimal feed controls for chemical reactors, especially for
tubular reactors, is a well-known technique, see Edgar and Himmelblau [12],
Nishida et al. [20], and Buzzi-Ferraris et al. [8,9]. Our intention is to extend
the underlying mathematical model structure with the aim to determine also
the number of reactor cleanings and the operation length between successive
maintenance times under the assumption that time-dependent cost and con-
sumer demand functions are known over the whole time horizon.

The mathematical model is given as a distributed parameter system, strictly
speaking in the form of a set of first order partial differential equations in
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one space dimension. The chemical reactions and the temperature depend
dynamically on the space variable, whereas the dynamic decrease of the cross-
sectional area caused by coke deposition is time-dependent. In both cases we
know initial values either in the form of time-dependent feed control functions
or a constant tube diameter.

Our first objective is to schedule the reactor maintenance, i.e., we want to
determine a subdivision into operation intervals, where the reactor is cleaned
at the end of each interval. Then we want to compute dynamic feed rates
for each interval such that the overall profit of the reactor is maximized. The
structure of the input control is quite arbitrary—we allow piecewise constant
functions, piecewise linear functions, or piecewise cubic splines.

It must be guaranteed that the free cross-sectional area never falls below a
given lower bound, and that the temperature never exceeds a maximum value.
As soon as the cross-sectional area reaches this minimum level, the reaction is
stopped, the reactor has to be cleaned, and the process is restarted. Moreover,
there are bounds for the input controls, mass flows, and operation lengths.

It is essential to understand that the cleaning times are optimization variables,
since the price and demand functions may change over time. Changes of these
functions are the only causes for differences between the operation intervals,
since we always start with the same initial distribution of the cross-sectional
area after each reactor cleaning.

This distributed parameter system is discretized w.r.t. the time variable, and
the resulting system of ordinary differential equations in the space variable
is solved using standard algorithms. In our program we use the routines of
Hairer et al. [14] for non-stiff and those of Hairer and Wanner [15] for stiff
equations. Stiffness can be introduced by a mixture of fast and slow chemical
reactions. This approach is called the method of lines, see Schiesser [23]. Since
the cross-sectional area is monotonously decreasing w.r.t. time, we may apply
a rather crude approximation, e.g., by Euler’s difference formula.

The dynamic constraints are discretized using uniform grids over the space and
time interval. Since the input control functions can be described by a finite
number of variables, we obtain a finite dimensional and usually large nonlinear
programming problem. The resulting optimization problem is solved by the
sequential quadratic programming (SQP) code NLPQL of Schittkowski [24,25].
A special advantage of SQP methods is that they can efficiently handle a
relatively large number of inequality restrictions. Gradients are approximated
by finite differences, where the special sparsity structure of the Jacobian of
the problem is exploited.

However, the assumption that time-dependent price and consumer demand
functions are a priori known is somewhat unrealistic. In a real-life environment



these functions will permanently change, and even the technical conditions or
the chemical process can vary. Thus one has to guarantee that maintenance
times and feed rates can be adapted under real-time conditions, i.e., they must
be re-evaluated as fast as possible whenever model data are altered. Hence the
implemented numerical algorithm allows restarts, where the known solution
and additional iteration data of the numerical algorithm are exploited to get
a new solution within very few additional iterations.

In Section 2 we give an outline of the considered mathematical model. The
discretization of the distributed parameter system, the dynamic constraints,
and the control functions is described in Section 3. In Section 4 we give a
detailed description of the numerical algorithms that are used for the solution
of the problem. In Section 5 we introduce the dynamic equations of an acety-
lene reactor that serves as a case study. Some numerical results are presented
in Section 6 with an special emphasis on stability and real-time properties.
Appendix A gives an overview of all variables and constants in this paper and
the Appendices B and C contain the normalized parameters of the case study.

2 The Mathematical Model

In this section we consider the chemical reactions in a tubular reactor with
length L over a constant time horizon 7. The functions F}, F5, and F3 that
are used throughout this section denote suitable model functions depending
on the actual reactor type and the chemical reactions to be considered.

The molar concentrations of the r components C1, ..., C, are described by
the differential equations

oC

S t) = B (Cl,0), T, 1), A, 1), u(t)) 6

in the space variable z, where C(x,t) = (Cy(x,t),...,Cp(x,t))T € IR", with
the initial conditions

mj (07 t)ﬂ(ov t)

C;(0,t) = ()M, , Jg=1...1, (2)
and
C;(0,t) =0, j=rn+1,...,rm (3)
where
uj(t) :=m;(0,t), j=1...,r, (4)



are the feeds that are used to control the process, and
m(t) = 1i;(0.1) (5)
j=1
is the total mass flow in the reactor. The corresponding density is given by
plr.t) =3 Cj(x,t)M;, (6)
j=1

where M is the molar weight of the j-th component. We suppose that for the
reactor type we have in mind, the startup of the reaction is so fast that all
transient terms can be neglected.

The temperature in the considered reactor is defined by the adiabatic energy
balance in its general form,

8_T
ox

where the initial temperature is assumed to be constant,

(w,t) = F3(C(x, 1), T(x,1), Az, 1), u(t)), (7)

T(0,t) =Ty, tel0,7]. (8)

It should be pointed out that equations (1) and (7) are based on the justified
assumption that material and energy dynamics of the reactor are much faster
than the coking mechanism. Therefore all transient accumulation terms are
omitted from these equations.

The dynamic decrease of the cross-sectional area of the reactor is described
by the differential equation

0A
ot

with the initial distribution

(,1) = F5(Cla, ), T(x,1), A, 1), u(t)) (9)

Az, t0) = As(x) (10)
at some initial time ¢, € [0, 7].

We introduce now additional break points ¢ for i = 1, ..., n., at which the
reaction is stopped and the reactor is cleaned,

to <t <. <tle <, (11)
and get additional restart values

Az, t)) = Ay, i=1,...,n, (12)



for the cross-sectional area of the reactor. We neglect the actual cleaning time,
since the dynamic process becomes inactive. In other words, we integrate the
reaction equations only within an operation interval [t, t51] for i = 0, , Ne
with 2 := tg and ¢ =71,

While the reactor is in operation, it must be possible to change the model or
some data and to calculate a new optimal control under real-time conditions,
see Jang et al. [17], using the known solution as an initial value. This restart
of the process is expressed by an arbitrary initial time ¢y € [0, 7] together with
an initial distribution of the cross-sectional area A,(z) at this time.

If we assume for the time being that the cleaning times ¢, € IR"* are given, we
are looking for input mass feeds u(t) € IR™, such that the objective function

G(C.T, A u,t,) /(ZP iy (L, t) — ZP >

ne—1 tH‘l ( T Te
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is maximized, which represents the total profit of the reactor over the whole
operation interval [ty, 7]. We denote by E. the costs for cleaning the reactor,
and the real-valued functions P; for j = 1, ..., r, are the time-dependent
component prices which are assumed to be known in advance.

The resulting optimization problem has a series of constraints. There are lower
and upper bounds for the control variables,

Wt (t) < uit) S W), tEltoT], j=1,....%, (14)

J — 7
there are state constraints for the temperature,
T(x,t) <T™(t), x€l[0,L], te€t,T] (15)
and the reactor yields,

P(E) < 1y (Lot) < (), 1€ o), G=0..m  (16)

Moreover, we assume that there is a minimum runtime A#™" of the reactor,
which leads to the additional restrictions

> AR i =0,. .. n,. (17)



Finally we have to take into consideration the lower bound for the cross-
sectional area in the form

Az, t) > A™™(t), x€[0,L], tE€lty,7] (18)

As soon as the cross-sectional area reaches this minimum level, the reaction
is stopped, the reactor has to be cleaned, and the process is restarted.

In summary the optimal control problem consists in minimizing the total profit
of the reactor (13) with respect to v € U and all maintenance times ¢. € IR"
satisfying the constraints (11) and (17). We denote by U the set of admissible
controls, i.e., all piecewise constant functions, piecewise linear functions, or
piecewise cubic splines that satisfy the bounds (14). The state variables C, T
and A are given by the system of one-dimensional, first order partial differen-
tial equations (2), (7), and (9), with the initial conditions (3), (8), and (10).
We note that the mass flow functions 7;(x, ) implicitly depend on the control
and state variables.

3 Discretization

In this section we describe the discretization scheme used for the numerical
solution of the optimal control problem. The main idea is to proceed from
a given number of runtime intervals to avoid the formulation of a nonlinear
mixed integer optimization problem, and then to adapt this parameter using
a simple heuristic. The input control is approximated by functions defined by
finitely many parameters and after a suitable discretization of the distributed
parameter system with respect to space and time variables we obtain a finite
dimensional nonlinear programming problem.

The system equations are given in the form of a distributed parameter system,
i.e., a system of first order partial differential equations with spatial dimension
one as outlined in the previous section, where the dependencies from time and
space variable are explicitly known. A particular feature of the system is that
derivatives with respect to the time variable only appear in the expression that
describes the change of the cross-sectional area. We assume that the chemical
reaction starts so fast that initial transient influences can be neglected. We
know furthermore that the cross-sectional area is a monotonously decreasing
function with respect to the time variable for any fixed point in the reactor.
In other words, the dynamic behaviour of the system in the time variable ¢ is
completely different from the behaviour in the space variable x.

Thus we may apply a rather coarse subdivision of the operation intervals,



introducing additional times ¢}, ... , ¢!, in each interval [t} t.!], with
=t <th<.---<t, =t (19)

Then we discretize equation (9) using a first order Euler scheme,

Az, t) ) — Az, t)

= F3(C(m,t};),T(aj,t?{),A(x,ti),u(ti)) (20>

t%c—&—l - t%c
for k=1, ..., ny— 1, starting from
) A* I f ) = ’
A, ) = {000 =0 (21)
Ay, otherwise,
and get a system of ordinary differential equations
%(xa tk) = Fl (C(l’, tk)v T<I7 tk)? A(I, tk)a u<tk))> (22>
or i i i i i
oy (@2 1) = Fo(Cla, 1), T 1), Al 1) u(ty)). (23)
with initial values
(0, 48) = LRI TR 1 , 24
OJ<Oa k) m(tz)Mj 9 ) y Tey ( )
C;(0,t,) =0, j=r+1...,r (25)
T(0,t) = Tp. (26)

As already mentioned, the control functions are approximated by piecewise
constant functions, piecewise linear functions, or piecewise cubic splines. In
order to simplify the notation and to avoid additional interpolation, we sup-
pose that the grid points that are used for these approximations are identical
to those that are used for the discretization of the cross-sectional area, i.e.,
thoo.., tﬁw for: =0, ..., n.. For convenience all discrete control values that
uniquely define the approximated control function are combined in one vec-
tor u. Together with the cleaning times they comprise the 7,(n. + 1)ny + ne
optimization variables in the discretized problem.

In order to discretize the objective function and the constraints, we also need
a discretization of the space interval, e.g., in the form

O:x1<x2<---<xl:L,

where L denotes the total reactor length. Based on this space discretization
and the known time discretization (19), we get the following finite dimensional
approximations for the dynamic control and state constraints:



(1) Lower and upper bounds for the control:

umin S U S max (27)

min max

with constant vectors «™* and u of the same dimension as u.

(2) Upper bounds for the temperature:

T(xp, th) <T™(t:), h=1,...,1, i=0,...,n,

28
k= 1, vy N ( )
(3) Lower and upper bounds for the reactor yield:
mp () < mp(L,th), h=1,...,r, i=0,...,n, (20)
k= ].7 ceey N,
(L, 6) < g™ (ty), h=1,...,r, i=0,...,n (30)
k= 1, ey Ny
(4) Lower bounds for the cross-sectional area:
Am < Az, th), h=1,...,1, i=0,...,n, 31)
k= 1, ey Ny
(5) Lower and upper bounds for the cleaning times:
to<tl<. <t <1 (32)
A< g gt =1, ne — 1. (33)

It should be noted that we do not expect singular arcs for this class of reactor
models, i.e., any time intervals, where a constraint remains active at its bound.

The approximation of the objective function is obtained by numerical inte-
gration using the trapezoidal rule at the known time break points. Finally we
obtain a nonlinear programming problem with 7.(n. + 1)n; 4+ n. variables and
2l(ne + 1)ng + 2r(ne + 1)ng + 1 + (n. — 1) inequality constraints, if we neglect
simple bounds for the optimization variables. The underlying dynamic system
we have to integrate for each function evaluation, consists of (r 4 2)(n. + 1)n
ordinary differential equations.

4 Numerical Implementation

Our goal is to achieve a highly modular and flexible numerical implementation
in Fortran 77. First we have to solve large and perhaps stiff systems of ordinary
differential equations. Since we do not a priori know whether the system is
stiff or not and which algorithm could be the most efficient one in a special
situation, we allow the user to select one from six available codes:



(1) DOPRI5: Explicit Runge-Kutta code based on the method of Dormand
and Prince [11] of order 4(5) with step size control (Hairer et al. [14]).

(2) DOP853: Explicit Runge-Kutta code based on the method of Dormand
and Prince [11] of order 8(5,3) with step size control (Hairer et al. [14]).

(3) ODEX: Extrapolation code based on the GBS algorithm with variable
order and variable step sizes (Hairer et al. [14]).

(4) RADAUS5: Implicit Runge-Kutta method (Radau IIa) of order 5 with step
size control (Hairer and Wanner [15]).

(5) SDIRK4: Diagonally implicit Runge-Kutta method of order 4 with step
size control (Hairer and Wanner [15]).

(6) SEULEX: Extrapolation algorithm based on the linearly implicit Euler
method with step size control and order selection (Hairer and Wan-
ner [15]).

As outlined in the previous section, the optimal control problem is trans-
formed into a finite dimensional parameter optimization problem. For the
numerical solution of the resulting nonlinear problem we apply the sequential
quadratic programming (SQP) algorithm NLPQL of Schittkowski [25]. A par-
ticular advantage of these methods is that they can handle a large number of
inequality constraints without severe increase of the number of iterations or
computing time.

The numerical solution of the optimal control problem requires that a fixed
number of cleaning times is given. We start from an arbitrary number n.
specified by the user, and increase or decrease n. until the total profit (13)
cannot be further increased. It can be assumed that the user has sufficient
experience and knowledge about the reactor, so that the initial guess is not
too far away from the optimal value. The initial values of these cleaning times
are chosen equidistant in the whole time interval and then they are adapted
during the optimization process.

Gradients of objective function and constraints are evaluated by the forward
scaled difference formula. However, the special structure of the Jacobian of
constraints is exploited based on the observation that the state variables in
different time intervals are linked only by the cleaning times. Moreover the
time and space discretization procedures lead to lower triangular sub-matrices
for the sensitivities of the control parameters. Figure 1 shows the non-zero
structure of the Jacobian for two time intervals, i.e., for n, = 1, and two input
control functions.

There is no necessity to exploit this special structure within the SQP algorithm
NLPQL. The sparsity pattern belongs to inequality constraints, that are passed
to an algorithm for solving certain quadratic programming problems obtained
by a quadratic approximation of the Lagrangian function and a linearization
of the constraints. However, the full Jacobian of all constraints is evaluated



only at the starting point. Afterwards only gradients belonging to the very
few active constraints are re-evaluated. Moreover the quadratic programming
problem is solved by the dual method of Goldfarb and Idnani [13], where only
active inequality constraints are added to a so-called working set, i.e., very
few in our case.

Figure 1. Structure of the Jacobian

It should be noted that there exist at least three important alternative
approaches for the solution of optimal control problems.

Multiple shooting proceeds from the maximum principle of Pontryagin and
solves two-point boundary value problems representing the necessary optimal-
ity conditions, see Bulirsch [7] or Maurer and Gillessen [19] for a theoretical
treatment, or Oberle and Grimm [21] for a numerical implementation.

Another possible approach is based on dynamic programming, see Dadebo and
McAuley [10], Luus [18], or Vassiliadis et al. [28], and is frequently applied to
chemical engineering problems.

Reduced SQP methods use polynomial approximations of the state variables
to replace the differential equations by algebraic equations, see Biegler [3] for
a reference. This leads to a dramatic increase in the number of optimization
variables and nonlinear equality constraints and one has to take advantage
of the special structure when solving the large scale nonlinear programming
problem by adapted SQP or related methods.
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We prefer, however, our direct approach on account of several reasons. First
we have to solve distributed parameter systems leading to a large set of or-
dinary differential equations depending on the desired accuracy of the time
discretization and on the number of reaction equations. Large industrial tubu-
lar reactors are described by thousands of equations even in the steady-state
case, and the additional time discretization would dramatically increase the
size of dynamic system. To give an example, the case study in the next section
describes the reactions in an acetylene reactor and consists of only 8 reaction
equations, but leads to a system of 400 differential equations for 10 grid points
and 5 operation intervals.

5 A Case Study

We consider a real reactor producing acetylene (CoHy), reacting the methane
(CHy) in natural gas with oxygen. This reaction requires less oxygen com-
pared to complete combustion. The products are quickly quenched to keep
the acetylene from being converted entirely to coke, see Wansbrough [29].

During the reaction process a small part of the carbon is deposited in the
reactor as coke. The quantity and its distribution in the reactor depend on
the reaction equations. Since it is impossible to measure the cross-sectional
area directly, we need a mathematical model that describes the functional
dependence of the cross-sectional area from other system parameters. If the
deposition of coke reaches a certain limit, the reactor must be stopped and
the tube is cleaned.

We consider now six chemical reactions. Reactions 1 through 5 are the main
ones producing acetylene, but also undesirable byproducts such as coke. Re-
action 6 is included only to balance the hydrogen stoichiometry.

1. CH4 — %CQHQ + %HQ
2. CHy+ Oy — CO + HyO + Hy
3. CO+ 10, — CO,
(34)
4. C2H2 — 2C + H2
5. H2 + %OQ — HQO

6. C+2H,— CH,

11



All components in the reaction scheme of the acetylene reactor are numbered
in the following way:

Component 1: CHy
Component 2: Oy
Component 3: CyHsy
Component 4: CO,
Component 5: Hy
Component 6: CO
Component 7:  H,O
Component 8: CH,,

The reactions can be described by the following system of ordinary differential
equations, where C; denotes the molar concentration of the i-th component,

2 Cy(z,t) = (—ri(z,t) — ra(z, 1)) Jv(z,t),

T Cow,t) = (—rala,t) = drs(a, t) — yrs(x, 1)) fo(z, 1),

2 Cs(w,t) = (3ri(x,t) — ra(a, 1) /v(z, 1),

(%04(:1:,15) =r3(z,t)/v(x,t),

2Cs(w,t) = Bri(a,t) + roa, 1) +ra(z,t) (36)

—7r5(z,t) = n(l = e)ry(x, 1)) /v(z,1),
5%06(%15) = (ro(x,t) — r3(z, 1)) /v(x, 1),

C1(0,t) = CY(t),
Co(0,1) = C3 (1), (37)
Ci(0,t)=0, i=3,...,8,

and some reaction parameter c.

The five reaction rates r; contain some constant parameters, i.e., reaction
constants ki, ..., ks, activation energies Fy, ..., Fs5, and reaction orders aq,
as, and ay4. For the smaller and less important reactions, the stoichiometric
order can be used as an estimate for this reaction order. The average reaction
temperature T, is used to scale the exponential functions and R is the gas
constant.

12



Using these parameters we get the following expressions,

ri(z,t) = ky exp(—%(T(;ﬂ - i))C"” (z,1),
ro(x,t) = ko exp(—%( T))C’l z,1)C5? (z, 1),
ry(z,t) = ks exp(—%(T %))C’G x,t)CS5(z,1), (38)
ry(z,t) = lmexp(—%(T T%))C‘M (x,1),
rs(z,t) = ks exp(—%(T %))05 x,1)08° (2, 1).
It is assumed that the total mass flow
m(t) = 1mq(0,t) + ms(0,1), (39)

is constant during the reaction. The velocity of the mixture in the reactor
depends on the cross-sectional area A(x,t) and is given by

oo t) = (%Zﬁ)@’t). (40)
The reactor is controlled by the initial feeds of natural gas and oxygen,
m1(0,1), (0, 1), (41)
from which we derive the initial molar concentrations
ciie) = M0,
coy — 00-000.0) )
m(t) M,

The incremental change in temperature is determined by the rate of heat
release for all reactions

1 5

> ri(z, t)AH, (43)

p(ac7 tv(z,t)ey(x,t) =

with initial condition 7°(0,¢) = Tp. It depends on the density

0

pz,t) = :

Cj(l’,t)Mj (44>

8
=1

and the total heat capacity

c (I t) _ Z‘?:l CPJMJCJ(x7t>
P ?:1 MjCj(xat) .

(45)
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The individual heat capacities c¢p; are considered to be constant, and the pa-
rameters AH; denote the known heats of reaction.

The mass flow of each component can be computed from the solution of the
system (36) and (37), i.e.,

) . Ci(x,t)M,;
(@ £) = ilt) g (c@i A
=1 () I K3

(46)

The deposit of coke is modeled by the time dependent differential equation

0
EA(xjt) = —6T4($,t) (47>

with initial condition A(x,0) = Ay and some reaction parameter 3 € IR.

6 Numerical Results

In this section we present some numerical results that were obtained for the
acetylene reactor described in the previous section. The normalized reaction
parameters for this case study are derived from a real reactor at BASF and
are listed in Appendix A.

All numerical results were obtained on a PC with an Intel PentiumPro 200
processor and 96 MByte RAM, running Microsoft Windows NT 4.0. The dis-
cretized system of ordinary differential equations was integrated using the
explicit Runge-Kutta method of Dormand and Prince, i.e., the code DOPRI5
of Hairer et al. [14]. It turns out that a quite crude discretization yields ac-
ceptable results and that the ordinary differential equations are not stiff in
the present case study.

6.1 Simulation for constant feeds
To give a first impression of the the reactions in this model, we start with a
simulation using constant input feeds of oxygen and methane, i.e.,

mq(0,t) = ms(0,t) = 500, t€0,7], (48)

where we assume that the data of Table 1 are given. The corresponding surface
plot of the cross-sectional area is shown in Figure 2. We observe a drastic
violation of the minimum admissible cross sectional area of the tube A™®,

14



Table 1. Process parameters

name  value description

Ay 0.1 cross-sectional area of the tube
A™in 0,08 minimum cross-sectional area

L 1 length of the reactor

To 873.15 initial reaction temperature

™% 1300 maximum permissible temperature
T 200 duration of the process

At™in 60 minimum runtime of the reactor

J A 5000 costs of a reactor cleaning

l 21 number of space discretizations

Alz, ) Figure 2. Cross-sectional area for constant feed

6.2 Calculation of the optimal feeds

Now we want to compute the optimal control of the acetylene reactor, i.e.,
input feeds that yield feasible values of the state and control variables and
maximize the overall profit of the process. Throughout this section we use
piecewise linear approximations for the feeds of Oy and CHy.

For the start of the optimization algorithm we chose constant values of the
control functions, m4(0,t) = 400 and 12(0,¢) = 300. The expected time-
dependent price and demand data are given in the form of piecewise linear
approximations, see Appendix C. Moreover, we assume that the following

15



bounds for the feed controls are given:

200 < 111 (0,¢) < 800, t € [0, 7],
200 < 112(0,¢) < 800, t € [0,7].

In the first series of tests we want to show the influence of a different number
of operation periods. Thus we compute the optimal control for zero to five
maintenance breaks, i.e., for n. = 0 to n. = 5. To be able to compare some
performance data, we vary the number of time grid points to get discretized
optimization problems of approximately the same size, i.e., we require that
(ne + 1)ng &= 24. Table 2 shows the sizes of the resulting discretized nonlinear
programming problems.

Table 2. Size of discretized NLP problems

number of cleaning periods (n.) 0 1 2 3 4 5
number of time grid points (n) 24 12 8 6 5 4
number of optimization parameters 48 49 50 51 54 53
number of ODEs 216 216 216 216 225 216
number of constraints 1392 1393 1394 1395 1454 1397

The termination accuracy for the nonlinear programming code NLPQL is set
to 1078, and the relative error of the ODE solver DOPRI5 is set to 107°. Since
the starting trajectories are poor and the objective function is very flat in
a neighbourhood of an optimal solution, NLPQL requires a large number of
iterations to reach a solution. The number of iterations, the obtained objective
function values with and without cleaning costs, and some other convergence
results are listed in Table 3, using the following abbreviations:

f — objective function value without cleaning costs
f* — objective function value with cleaning costs

it — number of iterations

cv — constraint violation

ac — number of active constraints

oc — optimality criterion

For a precise definition of these terms and an description of the applied algo-
rithm see Schittkowski [24,25]. The corresponding control functions for the Oy
feed are shown in Figures 3 to 8. A typical surface plot of the cross-sectional
area for two operation intervals is shown in Figure 9. The optimal solution for

16



the CH, feed attains its upper bound in all test runs, i.e., m4(0,¢) = 800 for

te0,7].

Table 3. Performance results for different operation intervals

Ne f f* it cv ac oc

0 39634 39634 292 0.12-107" 3 0.31-1078
1 52235 47235 60 091-107'2 4 0.40-107°
2 58095 48095 101 0.45-107'2 6 0.29-1078
3 60405 45405 129 0.11-107 8 0.78-1078
4 60747 40747 335 0.34-107°% 12 0.98-1078
5 60931 35931 279 0.55-107Y 15 0.19-107%

The overall profit increases with the number of reactor cleanings if the corre-
sponding costs are neglected, see the second column of Table 3. So the optimal
distribution of the operating times depends on the cleaning costs. If we assume
costs of 5000 units as in our case, we maximize the profit for 2 breaks. It is
interesting to note that the SQP algorithm NLPQL reaches a quite accurate
solution despite of the numerical errors in the gradient approximation.

Figure 3. Optimal O feed for one operation period
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Figure 4. Optimal O4 feed for two operation periods
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Figure 5. Optimal O4 feed for three operation periods
560

555
550
545
540
535
530
525

0 50 100 150 200

17



Figure 6. Optimal Oq feed for four operation periods
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Figure 7. Optimal Oy feed for five operation periods
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Figure 8. Optimal O, feed for six operation periods
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Figure 9. Cross-sectional area for optimal feed
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6.3 Stability of the time discretization

Our next aim is to examine the stability of the various dicretizations that
are used in our approach. First we want to test the accuracy of the time
approximation. We proceed from three operation periods, i.e., n, = 2, and
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compute optimal solutions for the control variables with 4, 8, 12, and 16 time
grid points and the same number of grid points for the time discretization of
the dynamic system n.

The results are listed in Table 4. Objective function values decrease when
improving time discretization, as can be expected. The control function is
adapted more accurately and the finer constraint approximations lead to
smaller feasible domains, thus increasing the objective function. Also the num-
ber of iterations is increasing, since we get more and more complex optimiza-
tion problems.

Table 4. Performance results for different control approximations

n f* it cv ac oc

4 48494 86 0.37-107% 6 0.62-1078
8 48095 101 0.45-107'2 6 0.29-1078
12 47959 106 0.83-107'° 6 0.76-107%
16 47891 117 0.62-107° 6 0.23-1078
20 47810 137 0.22-107* 6 0.47-1078

6.4 Stability of the space discretization

In the subsequent tests we want to test the accuracy of the space discretiza-
tion. Since the ordinary differential equations are formulated w.r.t. the space
variable x, we get very accurate solutions for the underlying dynamic system
influenced only by the time discretization. On the other hand we discretize
the constraints at equidistant grid points, and the subsequent results show the
sensitivity of a solution for different grid sizes [. Again we proceed from three
maintenance intervals and eight equidistant grid points for the time variable.

The results are shown in Table 5. Obviously the discretization accuracy in-
fluences the final objective function significantly. The finer the grid, the more
accurate are the dynamic constraints. The feasible domain shrinks somewhat
leading to increasing cost function values.

6.5 Real-time optimization (restarts)

In the preceding tests the optimization algorithm NLPQL required a large
number of iterations to reach a solution. This can be explained by the fact
that the initial guesses for the optimization variables are too far away from

19



Table 5. Performance results for different spatial grid sizes

l f* it cv ac oc

5 48091 110 0.59-107' 6 0.16-1078
10 48096 110 0.65-107'°% 6 0.21-1078
20 48095 101 0.45-107'2 6 0.29-107%
40 48095 101 0.91-107'2 6 0.31-107%

the optimal solution. In a real-life environment, however, we may assume that
there exists an optimal solution of a running process, and that we need to
recompute another one after some minor changes of the model data, e.g.,
prices or consumer demands. Thus we want to simulate now restarts under
real-time assumptions.

Starting from a given optimal control of the tubular reactor with three inter-
vals, we make some small changes of the problem configuration to demonstrate
the possibility of computing a new optimal feed control under real-time con-
ditions. For this purpose we use the solution of the original problem, the ap-
proximations of the Lagrange multipliers and the BFGS matrix for a restart.
The results of these tests are listed in Table 6.

It turns out that the alteration of active or nearly active bounds for the cross
sectional area and the temperature leads to some significant alterations in
the profit function, in particular the increase of the admissible tube diameter
by 10 % leads to a profit loss of about 20%. An increase of the CHy prices
leads also to a decrease of the objective function, in contrast to an increase of
the CyHy prices.

Table 6. Real-time simulations

changes it f*
set T™2% = 1287 (—1%) 14 48089
set A™" = 0.0808 (+1 %) 18 47671
set A™M = 0.088 (+10 %) 50 41274

increase price of CHy by 0.02 27 46369
increase price of CoHy by 0.02 17 56993
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7 Conclusions

We extended an optimal control model for tubular reactors with the aim to
take into account also the number and position of cleaning times. The par-
tial differential equations are discretized using the method of lines, where the
resulting system of ordinary differential equations can be integrated by any
standard ODE solver. Since control functions are represented by a finite num-
ber of variables and since dynamic constraints are discretized at given time and
space grid points, we get a finite dimensional nonlinear programming prob-
lem, for which a standard SQP method is applied. Proceeding from a case
study in the form of an existing acetylene reactor, is is shown that operating
intervals and optimal feed controls can be simultaneously computed. By some
further numerical tests we show the stability of the proposed approach and
its behaviour under real-time conditions. This will be an essential assumption
for several industrial applications of the proposed method.
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A Nomenclature

a; Reaction order of the i-th reaction.
A(x,t) Free cross-sectional area of the reactor.
A™n(t) Lower bound for the cross-sectional area.
A, (z) Initial distribution of the cross-sectional area at time t.
Ao Cross-sectional area of the cleaned reactor.
[ Parameter that describes the decrease of the free cross-sectional area.
(x,t) Total heat capacity of the mixture.
cor(x,t) Heat capacity of the k-th component.
(x,t) Vector that contains the molar concentrations of all components.
t) Molar concentration of the k-th component.
C}(t) Initial molar concentration of the k-th component.
¢ Reaction parameter that describes the coke formation.
E; Activation energy of the i-th reaction.
Fi(...) Model function that describes the change of the molar concentrations.
F5(...) Model function that describes the change of the temperature.
F3(...) Model function that describes the change of the cross-sectional area.
G(...) Total profit of the reactor over the whole time horizon.
AH; Heat of reaction of the i-th reaction.
k; Reaction constant of the i-th reaction.
[ Number of space discretizations.
L Length of the reactor.
m(t) Total mass flow in the reactor.
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te

f
T(x,t)
Tmax(t)

=3

Mass flow of the j-th component.
Maximum demand of the j-th component.
Minimum demand of the j-th component.
Molar weight of the j-th component.
Average number of H atoms in CH,,.
Number of reactor cleanings.

Number of discrete times in each runtime interval.
Costs of a reactor cleaning.

Price of the j-th component.

Specific gravity of the mixture.

Total number of components.

Number of input feeds.

. Reaction rate of the i-th reaction.

Gas constant.

Total running time of the process.

Time coordinate.

Minimum length of each runtime interval.

Starting time of the process.

Vector that contains the times of all reactor cleanings.
The time of the i-th reactor cleaning.

The j-th discrete time in the i-th runtime interval.
Temperature.

Upper bound for the temperature.

Initial temperature at the reactor entry.

Average reaction temperature.

Vector that contains all control variables.

Input feed of the j-th component.

Upper bound on u;(t).

Lower bound on u;(t).

Set of all feasible controls.

Velocity of the mixture in the reactor.

Space coordinate.

The j-th point at which state constraints are evaluated.

24



B Reaction Data

a; = 0.72 Ey=34-10* ks = 3.6 - 10"
as = 0.56 E,=3.2-10* M, =16.0
as = 0.56 E;=3.0-10" My = 32.0

B=14-10° e=10-10"° M; = 26.0
cp1 = 2.219 AH, = —263.0-10° M, = 44.0
cp2 = 0.917 AH, =277.5-10° Ms = 2.0
cp3 = 1.683 AH; =283.0- 10 Mg = 28.0
cps = 0.837 AH, = 226.7-10° M, =18.0
cps = 14.32 AH; = 241.8 - 10° Mg =14.0
cps = 1.042 ki =1.8-10% n=2.0
cpr = 2.500 ky =9.0-10° R =8.314
cps = 1.595 ks =2.6-10° po = 0.047
E, =2.7-10" ky =8.9-10° T, = 873.15
Fy =3.8-10%
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C Price and Demand Data

Table 7. Component prices

component t=0 ¢t=50 ¢t=100 ¢t=150 ¢t =200

CHy 0.18 0.21 0.20 0.18 0.15
O2 0.052 0.053  0.050 0.049 0.048
CoHy 1.9 2.0 1.9 1.8 1.7
COq 0.0 0.0 0.0 0.0 0.0
Ho 0.054 0.054 0.053 0.052 0.052
CcO 0.054 0.055 0.05 0.049 0.048
H>0O 0.0 0.0 0.0 0.0 0.0
CH,, 0.2 0.2 0.15 0.13 0.1

Table 8. Minimum demands

component t=0 t=50 t=100 ¢t=150 ¢ =200

CH4 0.0 0.0 0.0 0.0 0.0
O2 0.0 0.0 0.0 0.0 0.0
CoHsy 30.0 40.0 30.0 20.0 10.0
CO2 0.0 0.0 0.0 0.0 0.0
Hs 20.0 20.0 10.0 10.0 10.0
CO 8.0 8.0 6.0 4.0 3.0
H,O 80.0 80.0 50.0 40.0 3.0
CH,, 0.4 0.4 0.2 0.2 0.1
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Table 9. Maximum demands

component t=0 t=050 t=100 t=150 ¢ =200
CHy 8000.0 9000.0  7000.0  6000.0  5000.0
Oq 8000.0 9000.0  5000.0  4000.0  3000.0
CoHy 3000.0 4000.0  3000.0 2000.0 1000.0
COq 8000.0 7000.0  6000.0  5000.0  4000.0
Hy 2000.0 2000.0 1000.0 1000.0  1000.0
CO 8000.0 8000.0  6000.0  4000.0  3000.0
H>O 8000.0 8000.0  5000.0  4000.0  3000.0
CH, 4000.0 4000.0  2000.0  2000.0  1000.0
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