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Abstract

Today, practical nonlinear programming problems are routinely solved by sequential quadratic
programming (SQP) methods stabilized by a monotone line search procedure subject to a suitable
merit function. To understand the mathematical background, we outline the optimality criteria from
where the basic SQP step is easily derived and understood. In case of computational errors as for
example caused by inaccurate function or gradient evaluations, however, the approach is unstable
and often terminates with an error message. To prevent this situation, a non-monotone line search
is proposed which allows the acceptance of a larger steplength. As a by-product, we consider also
the possibility to adapt the line search to run under distributed systems. Some numerical results are
included, which show that in case of very noisy function values a drastic improvement of the perfor-
mance is achieved compared to the version with monotone line search. Most industrial applications
of SQP methods are found in mechanical structural optimization. We present two alternative case
studies from electrical engineering, the optimum design of satellite antennas and of surface acoustic
wave filters.

Keywords: SQP, sequential quadratic programming, nonlinear programming, non-monotone line search,
merit function, distributed computing, global convergence, numerical results

1 Introduction

For the beginning, we consider the general optimization problem to minimize an objective function under
nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu ,

(1)

where x is an n-dimensional parameter vector containing the design variables. (1) is also called a nonlinear
program or nonlinear programming problem, respectively. To facilitate the subsequent notation, we
assume that upper and lower bounds xu and xl are not handled separately, i.e., that they are treated as
general inequality constraints. We then get the somewhat simpler program

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . , m .

(2)
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It is assumed that all problem functions f(x) and gj(x), j = 1, . . ., m, are continuously differentiable on
the whole IRn.

Although optimization software can be used in the form of a black box tool, it is highly desirable to
understand at least the basic ideas of the mathematical analysis behind the problem. One reason is that
there are many dangerous situations preventing an algorithm from approaching a solution in the correct
way. Typically, an optimization algorithm breaks down with an error message and the corresponding
documentation contains many technical phrases that must be understood to find a remedy. Another
reason is that one would like to get an idea how accurate the solution is and whether it is possible to
improve or verify a response.

For these reasons, we present a brief outline of the optimization theory behind the algorithms presented
on a very elementary level. Optimality criteria identifying a solution of (2) are shown in Section 2 together
with an illustrative example.

Sequential quadratic programming is the standard general purpose method to solve smooth nonlinear
optimization problems, at least under the following assumptions:

• The problem is not too large.

• Functions and gradients can be evaluated with sufficiently high precision.

• The problem is smooth and well-scaled.

There are numerous comparative numerical tests of implementations of SQP methods, e.g., for the code
NLPQL of Schittkowski [44, 54]. Results of empirical comparative studies of NLPQL and related SQP
methods are found in Schittkowski [39, 42, 41], Schittkowski et al. [55], and Hock and Schittkowski [25].
Further theoretical investigations published in [40, 43] and Dai and Schittkowski [12]. The algorithm is
extended to solve also nonlinear least squares problems efficiently, see [46] or [50], and to handle problems
with very many constraints, cf. [47].

To conduct the numerical tests, a random test problem generator is developed for a major comparative
study, see [39]. Two collections with more than 300 academic and real-life test problems are published
in Hock and Schittkowski [25] and in Schittkowski [45]. Corresponding Fortran source codes and a test
frame are found in [49]. The test examples are part of the Cute test problem collection of Bongartz et
al. [7]. About 80 test problems based on a Finite Element formulation are collected for the comparative
evaluation in Schittkowski et al. [55]. A set of 1,170 least squares test problems solved by an extension of
the code NLPQL to retain typical features of a Gauss-Newton algorithm, is described in [46, 50]. They
are part of an interactive software system called EASY-FIT, see [51].

Moreover, there exist hundreds of commercial and academic applications of NLPQL, for example

1. mechanical structural optimization, see Schittkowski, Zillober, Zotemantel [55] and Kneppe, Kram-
mer, Winkler [29],

2. data fitting and optimal control of transdermal pharmaceutical systems, see Boderke, Schittkowski,
Wolf [3] or Blatt, Schittkowski [6],

3. computation of optimal feed rates for tubular reactors, see Birk, Liepelt, Schittkowski, and Vogel [5],

4. food drying in a convection oven, see Frias, Oliveira, and Schittkowski [23],

5. optimal design of horn radiators for satellite communication, see Hartwanger, Schittkowski, and
Wolf [22],

6. receptor-ligand binding studies, see Schittkowski [48],

7. optimal design of surface acoustic wave filters for signal processing, see Bünner, Schittkowski, and
van de Braak [8].

In Section 3, we outline the general mathematical structure of an SQP algorithm, especially the
quadratic programming subproblem, the merit function, and the choice of penalty parameters. More-
over, we show that the implementation of an SQP method is more sophisticated and requires a deep
understanding of the underlying mathematical structure of an SQP algorithm. Numerous modifications
have been proposed during the past 30 years to improve the robustness, stability and efficiency of SQP

2



methods. The effective success in a practical environment under real-life conditions depends on a careful
selection of tools to fix the numerous decision to be made at each design step of a code.

However, SQP methods are quite sensitive subject to round-off or approximation errors in function
and especially gradient values. If objective or constraint functions cannot be computed within machine
accuracy or if the accuracy by which gradients are approximated is above the termination tolerance,
an SQP code often breaks down with an error message. In this situation, the line search cannot be
terminated within a given number of iterations and the algorithm stops.

A new idea is proposed by Dai and Schittkowski [12] making use of non-monotone line search. The
idea is to replace the reference value of the line search termination check by another one depending also
on previous iterates. Thus, we accept larger stepsizes and are able to overcome situations where the
quadratic programming subproblem yields insufficient search directions because of inaccurate gradients.

Moreover, the general availability of parallel computers and in particular of distributed computing
motivates a careful redesign of SQP methods to allow simultaneous function evaluations. The line search
procedure is further modified to allow parallel function calls, which can also be applied for approximating
gradients by a difference formulae. Both extensions are described in Section 4 in more detail.

Section 5 contains some numerical results obtained for a set of more than 300 standard test problems
of the collections published in Hock and Schittkowski [25] and in Schittkowski [45]. They show the
sensitivity of the new version with respect to the number of parallel machines and the influence of
gradient approximations by forward differences under uncertainty. However, it must be emphasized that
the distributed computation of function values is only simulated. It is up to the user to adopt the code
to a particular parallel environment.

An important advantage od SQP methods is their numerical stability and robustness. Only very few
parameters must be set to call the corresponding code, typically only the maximum number of iterations
and a termination tolerance. Nevertheless numerous pitfalls and traps exist which can occur during the
modelling process and which can prevent a successful and efficient solution. The most important ones
are

1. inappropriate termination accuracy,

2. violation of constraint qualification,

3. non-differentiable model functions,

4. empty feasible domains,

5. undefined model function values,

6. wrong function and variable scaling.

In Section 6 we show some remedies and outline how to avoid them that at least in certain situations.
Finally, we briefly introduce two complex industrial applications in Sections 7 and 8, where SQP

methods are in daily use, i.e., the optimal design of horn radiators for satellite communication and the
optimal design of surface acoustic wave filters.

2 Necessary and Sufficient Optimality Criteria

First we introduce some notations used throughout this paper.

• The gradient of a scalar function f(x) is

�f(x) .=
(

∂

∂x1
f(x), . . . ,

∂

∂xn
f(x)

)T

.

• The Hessian matrix of a scalar function f(x) is

�2f(x) .=
(

∂2

∂xi∂xj
f(x)

)
i,j=1,...,n

.
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• The Jacobian matrix of a vector-valued function F (x) = (f1(x), . . . , fl(x))T is

�F (x) .=
(

∂

∂xi
fj(x)

)
i=1,...,n;j=1...,l

.

The Jacobian matrix of F (x) = (f1(x), . . . , fl(x))T is also written in the form

�F (x) = (�f1(x), . . . ,�fl(x)) .

A twice continuously differentiable function is called smooth. The optimization theory for smooth prob-
lems is based on the Lagrangian function that combines objective function f(x) and constraints gj(x),
j = 1, . . ., m, in a proper way. In particular, the Lagrangian function allows us to state necessary and
sufficient optimality conditions.

Definition 2.1 Let problem (2) be given.

a) The feasible region P is the set of all feasible solutions

P
.= {x ∈ IRn : gj(x) = 0, j = 1, . . . , me, gj(x) ≥ 0, j = me + 1, . . . ,m} . (3)

b) The active constraints with respect to p ∈ P are characterized by the index set

I(x) .= {j : gj(x) = 0, me < j ≤ m} . (4)

c) The Lagrangian function of (2) is defined by

L(x, u) .= f(x) −
m∑

j=1

ujgj(x) (5)

for all x ∈ IRn and u = (u1, . . . , um)T ∈ IRm. The variables uj are called the Lagrangian multipliers
of the nonlinear programming problem.

x is also called the primal and u the dual variable of the nonlinear program (2). To become familiar
with the notation of a Lagrangian function, we consider a very simple example that we use throughout
this chapter to illustrate the theory.

Example 2.1 An optimization problem is defined by the functions

f(x1, x2) = x1
2 + x2 ,

g1(x1, x2) = 9 − x1
2 − x2

2 ≥ 0 ,

g2(x1, x2) = 1 − x1 − x2 ≥ 0 .

The Lagrangian function of the problem is

L(x, u) = x1
2 + x2 − u1(9 − x1

2 − x2
2) − u2(1 − x1 − x2) .

It is easy to see in Figure 1 that the optimal solution x� and the corresponding active set are

x� = (0,−3)T , I(x�) = {1} .

In general, we only expect that an optimization algorithm computes a local minimum and not a global
one, that is a point x� with f(x�) ≤ f(x) for all p ∈ P ∩ U(x�), U(x�) a sufficiently small neighborhood
of x�. However, a local minimizer of a nonlinear programming problem is a global one if the problem is
convex, i.e., if f is convex, if gj is linear for j = 1, . . ., me, and if gj is concave for j = me + 1, . . ., m.
These conditions guarantee that the feasible domain P is a convex set.
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Figure 1: Feasible Domain and Objective Function

Definition 2.2 A function f : IRn → IR is called convex if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all x, y ∈ IRn and λ ∈ (0, 1), and concave if we replace ≤ by ≥.

For a twice differentiable function f , convexity is equivalent to the requirement that �2f(x) is positive
definite, i.e., that zT �2 f(x)z ≥ 0 for all z ∈ IRn. Convexity of an optimization problem is important
mainly from the theoretical point of view, since many of the convergence, duality, or other theorems can
be proved only in this special case. In practical situations, however, we hardly have a chance to check
numerically, whether a problem is convex or not.

To formulate the subsequent optimality conditions, we need a special assumption to avoid irregular
behavior of the feasible set P at a local solution. We call it constraint qualification, also denoted as
Slater-condition or regularity in more general form. In our situation, it is sufficient to proceed from the
following definition.

Definition 2.3 The nonlinear program (2) satisfies a constraint qualification in x� ∈ P , if the gradients
of active constraints, the vectors �gj(x�) for j ∈ {1, . . . , me} ∪ I(x�), are linearly independent.

Example 2.2 Assume that constraints are given by

g1(x1, x2) = x2 ≥ 0 ,

g2(x1, x2) = −x2 + x1
2 ≥ 0 ,

and let x� = (0, 0)T . Since �g1(x�) = (0, 1)T , �g2(x�) = (0,−1)T , we get

�g1(x�) + �g2(x�) = 0 .

Thus, the constraint qualification is not satisfied, see Figure 2.

For developing and understanding an optimization method, the subsequent theorems are essential.
They characterize optimality and are therefore important to check a current iterate with respect to its
convergence accuracy.

Theorem 2.1 (necessary 2nd order optimality conditions) Let f and gj be twice continuously dif-
ferentiable for j = 1, . . . ,m, x� a local solution of (2), and the constraint qualification in x� be satisfied.
Then there exists u� ∈ IRm with
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Figure 2: Constraint Qualification

a) (first-order condition)
u�

j ≥ 0 , j = me + 1, . . . , m ,

gj(x�) = 0 , j = 1, . . . ,me ,

gj(x�) ≥ 0 , j = me + 1, . . . ,m ,

�xL(x�, u�) = 0 ,

u�
j gj(x�) = 0 , j = me + 1, . . . ,m ,

(6)

b) (second-order condition)
sT �2

x L(x�, u�)s ≥ 0 (7)

for all s ∈ IRn with �gj(x�)T s = 0, j ∈ {1, . . . , me} ∪ I(x�).

Statement a) of the theorem is called the Karush-Kuhn-Tucker condition. It says that at a local
solution the gradient of the objective function can be expressed by a linear combination of gradients of
active constraints. Statement b) implies that the Lagrangian function is positive semi-definite on the
tangential space defined by the active constraints.

It is not possible to omit the constraint qualification, as shown by the subsequent example.

Example 2.3 Let
f(x1, x2) = x1 ,

g1(x1, x2) = −x2 ≥ 0 ,

g2(x1, x2) = x2 − x1
2 ≥ 0 .

Since P = {(0, 0)}, x� = (0, 0)T is the optimal solution. However, we have

�xL(x�, u�) =
(

1
u�

1 − u�
2

)
	=
(

0
0

)

indicating that the Karush-Kuhn-Tucker condition cannot be satisfied.

It is also possible to derive a very similar reverse optimality condition that does not require the
constraint qualification.

Theorem 2.2 (sufficient 2nd order optimality conditions) Let f and gj be twice continuously dif-
ferentiable for j = 1, . . . ,m and x� ∈ IRn, u� ∈ IRm be given, so that the following conditions are
satisfied:
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a) (first-order condition)
u�

j ≥ 0 , j = me + 1, . . . , m ,

gj(x�) = 0 , j = 1, . . . ,me ,

gj(x�) ≥ 0 , j = me + 1, . . . ,m ,

�xL(x�, u�) = 0 ,

u�
j gj(x�) = 0 , j = me + 1, . . . ,m ,

b) (second-order condition)
sT �2

x L(x�, u�)s > 0

for all s ∈ IRn with s 	= 0, �gj(x�)T s = 0, j = 1, . . ., me, and for all s with �gj(x�)T s = 0,
j = me + 1, . . ., m, and u�

j > 0.

Then x� is an isolated local minimum of f on P , i.e., there is a neighborhood U(x�) of x� with f(x�) <
f(x) for all x ∈ U(x�) ∩ P , x 	= x�.

When reading nonlinear programming textbooks, one has to be aware that optimality conditions are
often stated in a slightly different way. The formulation of a nonlinear programming problem varies
from author to author, for example depending on a minimum or a maximum formulation, whether the
inequality constraints use ≤ instead of ≥, or whether upper and lower bounds are included or not.
There exist different versions of the above theorems, where assumptions are either more general or more
specialized, respectively. To illustrate the optimality criteria, we consider a few examples.

Example 2.4 Assume that n = 2, me = 0, m = 2, and that x� is an optimal solution with active
constraints g1 and g2. Then the gradient of the objective function must point into the cone spanned by
the gradients �g1(x�) and �g2(x�). In other words, there must exist two multipliers u�

1 ≥ 0 and u�
2 ≥ 0

with
�f(x�) = u�

1 � g1(x�) + u�
2 � g2(x�) ,

see Figure 3.

Figure 3: Optimality Condition

Example 2.5 Consider again Example 2.1,

f(x) = x1
2 + x2 ,

g1(x) = 9 − x1
2 − x2

2 ≥ 0 ,

g2(x) = 1 − x1 − x2 ≥ 0 .

We have already seen that x� = (0,−3)T is the unique optimal solution of the convex optimization
problem. From the Karush-Kuhn-Tucker condition

�xL(x, u) =
(

2x1

1

)
− u1

(−2x1

−2x2

)
− u2

(−1
−1

)
=
(

2x1(1 + u1) + u2

1 + 2u1x2 + u2

)
= 0
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we get the multipliers u�
1 = 1/6 und u�

2 = 0. Moreover, the Hessian matrix of the Lagrangian function

�2
xL(x�, u�) =

(
7/3 0
0 1/3

)

is positive definite.

3 The Quadratic Programming Subproblem and the Augmented
Lagrangian Merit Function

Sequential quadratic programming or SQP methods belong to the most powerful nonlinear programming
algorithms we know today for solving differentiable nonlinear programming problems of the form (2).
The theoretical background is described e.g. in Stoer [58] in form of a review, or in Spellucci [57] in form
of an extensive text book. From the more practical point of view, SQP methods are also introduced in the
books of Papalambros, Wilde [33] and Edgar, Himmelblau [14]. Their excellent numerical performance
was tested and compared with other methods in Schittkowski [39], and since many years they belong to
the most frequently used algorithms to solve practical optimization problems.

The basic idea is to formulate and solve a quadratic programming subproblem in each iteration
which is obtained by linearizing the constraints and approximating the Lagrangian function L(x, u) (5)
quadratically, where x ∈ IRn is the primal and u = (u1, . . . , um)T ∈ IRm the dual variable, i.e., the
multiplier vector. Assume that xk ∈ IRn is an actual approximation of the solution, vk ∈ IRm an
approximation of the multipliers, and Bk ∈ IRn×n an approximation of the Hessian of the Lagrangian
function all identified by an iteration index k. Then a quadratic programming subproblem of the form

minimize 1
2dT Bkd + ∇f(xk)T d

d ∈ IRn : ∇gj(xk)T d + gj(xk) = 0 , j ∈ E,

∇gj(xk)T d + gj(xk) ≥ 0 , j ∈ I

(8)

is formulated and must be solved in each iteration. Here we introduce index sets E
.= {1, . . . , me} and

I
.= {me +1, . . . ,m}. Let dk be the optimal solution, uk the corresponding multiplier of this subproblem,

and denote by

zk
.=
(

xk

vk

)
, pk

.=
(

dk

uk − vk

)
(9)

the composed iterate zk and search direction xk. A new iterate is obtained by

zk+1
.= zk + αkpk , (10)

where αk ∈ (0, 1] is a suitable steplength parameter.
To motivate the formulation of the particular subproblem, let me = m for simplicity, i.e., we assume

for a moment that there are no inequality constraints. The Karush-Kuhn-Tucker optimality conditions
(6) are then written in the form (�xL(x, v)

g(x)

)
= 0

with g(x) = (g1(x), . . . , gm(x))T . In other words, the optimal solution and the corresponding multipliers
are the solution of a system of n + m nonlinear equations F (z) = 0 with n + m unknowns z = (x, v),
where

F (z) =
( �xL(x, v)

g(x)

)
.

Let zk = (xk, vk) be an approximation of the solution. We apply Newton’s method and get an estimate
for the next iterate by

�F (zk)qk + F (zk) = 0 .

After insertion, we obtain the equation(
Bk : −� g(xk)

�g(xk)T : 0

)(
dk

yk

)
+
(�f(xk) −�g(xk)vk

g(xk)

)
= 0
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with Bk = �2
xL(xk, vk), where qk = (dk, yk). Defining now uk = yk + vk, we get

Bkdk −�g(xk)uk + �f(xk) = 0

and
�g(xk)T dk + g(xk) = 0 .

But these equations are exactly the optimality conditions for the quadratic programming subproblem.
To sum up, we come to the following conclusion:

A sequential quadratic programming method is identical to Newton’s method of solving
the necessary optimality conditions, if Bk is the Hessian of the Lagrangian function and if
we start sufficiently close to a solution.

Now we assume that inequality constraints are again permitted, i.e., me ≤ m. A straightforward
analysis shows that if dk = 0 is an optimal solution of (8) and uk the corresponding multiplier vector,
then xk and uk satisfy the necessary optimality conditions of (2).

However, the linear constraints in (8) can become inconsistent even if we assume that the original
problem (2) is solvable. As in Powell [34], we add an additional variable δ to (8) and solve an (n + 1)-
dimensional subproblem with consistent constraints.

Another numerical drawback of (8) is that gradients of all constraints must be reevaluated in each
iteration step. But if xk is close to the solution, the calculation of the gradients of inactive nonlinear
constraints is redundant. Given a constant ε > 0, we define the sets

I
(k)

1 = {j ∈ I : gj(xk) ≤ ε or v
(k)
j > 0}, I

(k)

2 = I \ I
(k)

1 (11)

and solve the following subproblem at each step,

minimize 1
2dT Bkd + ∇f(xk)T d + 1

2�kδ2

d ∈ IRn, δ ∈ [0, 1] : ∇gj(xk)T d + (1 − δ)gj(xk) = 0, j ∈ E,

∇gj(xk)T d + (1 − δ)gj(xk) ≥ 0, j ∈ I
(k)

1 ,

∇gj(xk(j))T d + gj(xk) ≥ 0, j ∈ I
(k)

2 .

(12)

The indices k(j) ≤ k denote previous iterates where the corresponding gradient has been evaluated the
last time. We start with I

(0)

1
.= I and I

(0)

2
.= ∅ and reevaluate constraint gradients in subsequent iterations

only if the constraint belongs to the active set I
(k)

1 . The remaining rows of the Jacobian matrix remain
filled with previously computed gradients.

We denote by (dk, uk) the solution of (12), where uk is the multiplier vector, and by δk the additional
variable to prevent inconsistent linear constraints. Under a standard regularity assumption, i.e., the
constraint qualification, it is easy to see that δk < 1.

Bk is a positive-definite approximation of the Hessian of the Lagrange function. For the global
convergence analysis presented in this paper, any choice of Bk is appropriate as long as the eigenvalues
are bounded away from zero. However, to guarantee a superlinear convergence rate, we update Bk by
the BFGS quasi-Newton method

Bk+1
.= Bk +

akaT
k

bT
k ak

− BkbkbT
k Bk

bT
k Bkbk

(13)

with
ak

.= �xL(xk+1, uk) −�xL(xk, uk),
bk

.= xk+1 − xk.
(14)

Usually, we start with the unit matrix for B0 and stabilize the formula by requiring that aT
k bk ≥

0.2 bT
k Bkbk, see Powell [34], Stoer [58], or Schittkowski [41]. A penalty parameter �k is required to

reduce the perturbation of the search direction by the additional variable δ as much as possible, see
Schittkowski [43] for a motivation and a formula.

To enforce global convergence of the SQP method, we have to select a suitable penalty parameter rk

and to select a steplength αk, see (10), subject to a merit function φk(α). To avoid the Maratos effect,
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a certain irregularity leading to infinite cycles, we use the differentiable augmented Lagrange function of
Rockafellar [38],

Φr(x, v) .= f(x) −
∑

j∈E∪I1

(vjgj(x) − 1
2
rjgj(x)2) − 1

2

∑
j∈I2

v2
j /rj , (15)

with r = (r1, . . . , rm)T , I1
.= {j ∈ I : gj(x) ≤ vj/rj} and I2

.= I \I1, cf. Schittkowski [43]. The merit
function is then defined by

φk(α) .= Φrk+1(zk + αpk), (16)

see also (9). To ensure that pk is a descent direction of Φrk+1(zk), i.e., that

φ′
k(0) = ∇Φrk+1(zk)T pk < 0 , (17)

the new penalty parameter rk+1 must be selected carefully. Each coefficient r
(k)
j of rk is updated by

r
(k+1)
j

.= max

(
σ

(k)
j r

(k)
j ,

2m(u(k)
j − v

(k)
j )

(1 − δk)dT
k Bkdk

)
(18)

for j = 1, . . . ,m. The sequence {σ(k)
j } is introduced to allow decreasing penalty parameters at least in the

beginning of the algorithm by assuming that σ
(k)
j ≤ 1. A a sufficient condition to guarantee convergence

of {r(k)
j } is that there exists a positive constant ζ with

∞∑
k=0

[
1 − (σ(k)

j )ζ
]

< ∞ . (19)

for j = 1, . . . ,m.

Example 3.1 Consider Example 2.1, where the optimization problem is given by

min x1
2 + x2

x1, x2 : 9 − x1
2 − x2

2 ≥ 0 ,

1 − x1 − x2 ≥ 0 .

Proceeding from the starting values x0 = (2, 0)T and the identity matrix for B0, we get the quadratic
programming subproblem

min 1
2d1

2 + 1
2d2

2 + 4d1 + d2

d1, d2 : −4d1 + 5 ≥ 0 ,

−d1 − d2 − 1 ≥ 0 .

Since none of the linear constraints is active at the unconstrained minimum, the solution is d0 =
(−4,−1)T with multiplier vector u0 = (0, 0)T . Assuming that α0 = 1, x1 = (−2,−1)T is the next iterate.
The new approximation of the Hessian of the Lagrangian function, B1, is computed by one update of the
BFGS method

B1 = B0 +
a0a

T
0

bT
0 a0

− B0b0b
T
0 B0

bT
0 B0b0

,

a0 = �xL(x1, u0) −�xL(x0, u0) = �f(x1) −�f(x0) =
(−8

0

)
,

b0 = x1 − x0 =
(−4
−1

)
.

Then

B1 =
(

1 0
0 1

)
+

1
32

(
64 0
0 0

)
− 1

17

(
16 4
4 1

)
≈
(

2 − 1
4

− 1
4 1

)
.
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The new quadratic programming subproblem is

min d1
2 + 1

2d2
2 − 1

4d1d2 − 4d1 + d2

d1, d2 : 4d1 + 2d2 + 4 ≥ 0 ,

−d1 − d2 + 4 ≥ 0 .

Again, the unconstrained solution is feasible and

d1 =
1
31

(
60

−16

)
, u1 =

(
0
0

)

is the optimal solution of the subproblem. Assuming that the steplength is 1, the new iterate is

x2 =
1
31

( −2
−47

)
.

4 An SQP Algorithm with Non-monotone Line Search and Dis-
tributed Function Evaluations

The implementation of a line search algorithm is a critical issue when implementing a nonlinear program-
ming algorithm, and has significant effect on the overall efficiency of the resulting code. On the one hand
we need a line search to stabilize the algorithm, on the other hand it is not advisable to waste too many
function calls. Moreover, the behavior of the merit function becomes irregular in case of constrained op-
timization because of very steep slopes at the border caused by penalty terms. Even the implementation
is more complex than shown below, if linear constraints or bounds for variables are to be satisfied during
the line search.

Typically, the steplength αk is chosen to satisfy the Armijo [1] condition

φk(αk) ≤ φk(0) + µαkφ′
k(0) , (20)

see for example Ortega and Rheinboldt [31], or any other related stopping rule. Since pk is a descent
direction, i.e., φ′

k(0) < 0, we achieve at least a sufficient decrease of the merit function at the next iterate.
The test parameter µ must be positive and not greater than 0.5.

The parameter αk is chosen by a separate algorithm which should take the curvature of the merit
function into account. If αk is too small, the line search terminates very fast, but the resulting stepsizes
might become too small leading to a higher number of outer iterations. On the other hand, a larger
value close to one requires too many function calls during the line search. Thus, we need some kind of
compromise which is obtained by applying first a polynomial interpolation, typically a quadratic one,
combined with a bisection strategy in irregular situations, if the interpolation scheme does not lead to a
reasonable new guess. (20) is then used as a stopping criterion.

However, practical experience shows that monotonicity requirement of (20) is often too restrictive
especially in case of very small values of φ′

r(0), which are caused by numerical instabilities during the
solution of the quadratic programming subproblem or, more frequently, by inaccurate gradients. To
avoid interruption of the whole iteration process, the idea is to conduct a line search with a more relaxed
stopping criterion. Instead of testing (20), we accept a stepsize αk as soon as the inequality

φk(αk) ≤ max
k−l(k)≤j≤k

φj(0) + µαkφ′
k(0) (21)

is satisfied, where l(k) is a predetermined parameter with l(k) ∈ {0, . . . ,min(k, L)}, L a given tolerance.
Thus, we allow an increase of the reference value φrjk

(0), i.e. an increase of the merit function value. For
L = 0, we get back the original criterion (20).

To implement the non-monotone line search, we need a queue consisting of merit function values at
previous iterates. We allow a variable queue length l(k) which can be adapted by the algorithm, for
example, if we want to apply a standard monotone line search as long as it terminates successfully within
a given number of steps and to switch to the non-monotone one otherwise.

The idea to store reference function values and to replace the sufficient descent property by a suffi-
cient ’ascent’ property, is for example described in Dai [11], where a general convergence proof for the
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unconstrained case is presented. The general idea goes back to Grippo, Lampariello, and Lucidi [17],
and was extended to constrained optimization and trust region methods in a series of subsequent pa-
pers, see Bonnans et al. [4], Grippo et al. [18, 19], Ke et al. [28], Panier and Tits [32], Raydan [37], and
Toint [60, 61].

To summarize, we obtain the following non-monotone line search algorithm based on quadratic in-
terpolation and an Armijo-type bisection rule which can be applied in the k-th iteration step of an SQP
algorithm:

Algorithm 4.1 Let β, µ with 0 < β < 1 and 0 < µ < 0.5 be given, further an integer l(k) ≥ 0.

Start: αk,0
.= 1

For i = 0, 1, 2, . . . do:
1) If φk(αk,i) < maxk−l(k)≤j≤k φj(0) + µ αk,i φ′

k(0), let ik
.= i, αk

.= αk,ik
and

stop.

2) Compute ᾱk,i
.=

0.5 α2
k,i φ′

r(0)
αk,iφ′

r(0) − φr(αk,i) + φr(0)
.

3) Let αk,i+1
.= max(β αk,i, ᾱk,i).

Corresponding convergence results for the monotone case, i.e., L = 0, are found in Schittkowski [43].
ᾱk,i is the minimizer of the quadratic interpolation and we use a relaxed Armijo-type descent property
for checking termination. Step 3) is required to avoid irregular situations. For example, the minimizer of
the quadratic interpolation could be outside of the feasible domain (0, 1]. The line search algorithm must
be implemented together with additional safeguards, for example to prevent violation of bounds and to
limit the number of iterations.

The increasing numerical complexity of practical optimization problems requires a careful redesign
of SQP methods to allow simultaneous function evaluations. On the one hand, distributed function
calls can be used to approximate derivatives by difference formulae without influencing the nonlinear
programming algorithm at all. However, the line search algorithm requires the serial computation of
φk(αk,i), i = 1, 2, . . .. Thus, Algorithm 4.1 is further modified to allow parallel function calls.

To outline the approach, let us assume that functions can be computed simultaneously on P different
machines, P ≥ 1. Then P test values αk,i

.= βi−1 with β = ε1/(P−1) are selected, i = 1, . . ., P , where ε
is a guess for the machine precision. We require P parallel function calls to get the corresponding model
function values. The largest αk,i satisfying a sufficient descent property (21), say for i = ik, is accepted
as the new steplength for getting the subsequent iterate with αk

.= αk,ik
. For an alternative approach

based on pattern search, see Hough, Kolda, and Torczon [26].
The proposed parallel line search will work efficiently, if the number of parallel machines P is suffi-

ciently large, and is summarized as follows:

Algorithm 4.2 Let β, µ with 0 < β < 1 and 0 < µ < 0.5 be given, further two integers P ≥ 1 and
l(k) ≥ 0.

Start: For αk,i
.= βi compute φk(αk,i) for i = 0, . . ., P − 1.

For i = 0, 1, 2, . . . do:
If φk(αk,i) < maxk−l(k)≤j≤k φj(0) + µ αk,i φ′

k(0), let ik
.= i, αk

.= αk,ik
and

stop.

To precalculate P candidates at log-distributed points between a small tolerance α = τ and α = 1,
0 < τ << 1, we propose β = τ1/(P−1).

The paradigm of parallelism is SPMD, i.e., Single Program Multiple Data. In a typical situation we
suppose that there is a complex application code providing simulation data, for example by an expensive
Finite Element calculation in mechanical structural optimization. It is supposed that various instances of
the simulation code providing function values are executable on a series of different machines controlled
by a master program that executes an optimization algorithm. By a message passing system, for example
PVM, see Geist et al. [15], only very few data need to be transferred from the master to the slaves.
Typically only a set of design parameters of length n must to be passed. On return, the master accepts
new model responses for objective function and constraints, at most m+1 double precision numbers. All
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massive numerical calculations and model data, for example to compute the stiffness matrix of a Finite
Element model in a mechanical engineering application, remain on the slave processors of the distributed
system.

Now we are able to formulate the SQP algorithm for solving the constrained nonlinear programming
problem (2), see Schittkowski [40, 41, 43] for further details. First, we have to select a couple of real
constants ε, β, µ, δ̄, �̄, ε and of integer constants L and P , that are not changed within the algorithm
and that satisfy

ε ≥ 0 , 0 ≤ β ≤ 1 , 0 ≤ δ̄ < 1 , �̄ > 1 , ε > 0, , L ≥ 0 , P ≥ 1.

Choose starting values x0 ∈ IRn, v0 ∈ IRm with v
(0)
j ≥ 0 for j ∈ I, B0 ∈ IRn×n positive definite, � ∈ IR

with � > 0, and r0 ∈ IRm with r
(0)
j > 0 for j = 1, . . ., m. Moreover, we set I

(0)

1
.= I and I

(0)

2
.= ∅.

The main steps consist of the following instructions:

Algorithm 4.3 Start: Evaluate f(x0), ∇f(x0), gj(x0), and ∇gj(x0), j = 1, ..., m.
For k = 0, 1, 2, ... compute xk+1, vk+1, Bk+1, rk+1, �k+1, and I

(k+1)
1 as follows:

Step 1. Solve the quadratic programming subproblem (12) and denote by dk, δk the optimal solution and
by uk the optimal multiplier vector. If δk ≥ δ̄, let �k

.= �̄�k and solve (12) again

Step 2. Determine a new penalty parameter rk+1 by (18).

Step 3. If φ′
k(0) ≥ 0, let �k

.= �̄�k and go to Step 1.

Step 4. Define the new penalty parameter �k+1.

Step 5. Choose a queue length l(k), 0 ≤ l(k) ≤ L, to apply Algorithm 4.1 in case of P = 1 or Algo-
rithm 4.2 otherwise with respect to the merit function φk(α), see (16), to get a steplength αk.

Step 6. Let xk+1
.= xk +αkdk, vk+1

.= vk +αk(uk − vk) be new iterates and evaluate f(xk+1), gj(xk+1),

j = 1, . . ., m, ∇f(xk+1), I
(k+1)

1 by (11), and ∇gj(xk+1), j ∈ E ∪ I
(k+1)

1 .

Step 7. Compute a suitable new positive-definite approximation of the Hessian of the Lagrange function
Bk+1 by (13), set k

.= k + 1, and repeat the iteration.

To implement Algorithm 4.3, various modifications are necessary. Despite of a theoretically well-
defined procedure, the practical code might fail because of round-off errors or violations of some assump-
tions. For example, we need additional bounds to limit the number of cycles in Step 1, between Step 3
and Step 1, in the line search, and to limit the number of outer iteration steps. The tolerance ε which
is used to determine active constraints by (11), serves also as a stopping criterion. The implementation
NLPQL of Schittkowski [44, 54] applies several criteria, either simultaneously or in an alternative way,
e.g.,

dT
k Bkdk < ε2 ,

| � f(xk)T dk| +
∑m

j=1 |u(k)
j gj(xk)| < ε ,

‖ �x L(xk, uk)‖ <
√

ε ,∑m
j=1 |gj(xk)| +∑m

j=me+1 |min(0, gj(xk))| <
√

ε .

(22)

There remain a few comments to illustrate some further algorithmic details. Most of them are based
on empirical investigations or some experience obtained from a large number of practical applications.

1. Although it is sometimes possible to find a reasonable good starting point x0, it is often impossible
to get an initial guess for the Hessian the Lagrange function and the multipliers. Thus, the choice
of B0

.= I, where I denotes the n by n identity matrix, and v
.= 0 is often used in practice.

2. The BFGS formula (13) can be replaced by an equivalent formula for the factors of a Cholesky
decomposition Bk = LkLT

k , where Lk is a lower triangular matrix.
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3. The quadratic programming subproblem can be solved by any available black-box algorithm. If
a Cholesky decomposition is updated as outlined before, the choice of a primal-dual algorithm
is recommended, see e.g. Powell [36]. The additional variable ρ requires the introduction of an
additional column and row to Bk, where the lowest diagonal element contains the penalty parameter
ρk.

4. Since the introduction of the additional variable δ leads to an undesired perturbation of the search
direction, it is recommended to solve first problem (8) without the additional variable and to
introduce ρ only in case of a non-successful return.

5. It is recommended to start the line search procedure with l(k) .= 0 and to switch to the non-
monotone case l(k) .= L only if αk cannot be computed within a given number of steps.

6. The parallel line search with a limited number of available merit function values seems to be
restrictive and seems to require additional theoretical convergence assumptions, since the analysis
of the subsequent section is not able to predetermine the required number of cycles or sub-iterations,
see also the above comments. However, a practical implementation of the non-monotone line search
procedure of Algorithm 4.1 also needs a fixed limitation of the number of iterations. Thus, we
assume for simplicity that P is sufficiently big.

Example 4.1 Consider Example 2.1 again, where the optimization problem is given by

min x1
2 + x2

x1, x2 : 9 − x1
2 − x2

2 ≥ 0 ,

1 − x1 − x2 ≥ 0 .

If we apply an existing implementation, for example the code NLPQL of Schittkowski [44], we get the
iteration sequence of Table 4, also plotted in Figure 4. r(xk) is the sum of all constraint violations and
s(xk) is one of the internal stopping criteria,

s(xk) =| �f(xk)T dk | +
m∑

i=1

| uk
i gi(xk) | . (23)

k xk
1 xk

2 f(xk) r(xk) s(xk)
0 2.0000000 0.0000000 4.0000000 1.0 17.02
1 −2.0000000 −1.0000000 3.0000000 0.0 8.13
2 −0.1250000 −1.5937500 −1.5781250 0.0 1.38
3 0.1583333 −2.9065278 −2.8814583 0.0 0.22
4 0.4648261 · 10−1 −3.0032835 −3.0011228 0.22 · 10−1 0.54 · 10−2

5 −0.3564753 · 10−2 −3.0004167 −3.0004040 0.25 · 10−2 0.81 · 10−3

6 0.8267424 · 10−5 −3.0000022 −3.0000022 0.13 · 10−4 0.43 · 10−5

7 −0.3494870 · 10−7 −3.0000000 −3.0000000 0.74 · 10−10 0.25 · 10−10

8 0.2251719 · 10−9 −3.0000000 −3.0000000 0.0 0.12 · 10−18

Table 1: SQP Iterates

5 Numerical Results

Our numerical tests use the 306 academic and real-life test problems published in Hock and Schitt-
kowski [25] and in Schittkowski [45]. Part of them are also available in the CUTE library, see Bongartz
et. al [7], and their usage is described in Schittkowski [49].

Since analytical derivatives are not available for all problems, we approximate them numerically. The
test examples are provided with exact solutions, either known from analytical solutions or from the
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Figure 4: SQP Iterates

best numerical data found so far. The Fortran codes are compiled by the Intel Visual Fortran Compiler,
Version 8.0, under Windows XP, and executed on a Pentium IV processor with 2.8 GHz. Total calculation
time for solving the test problems with forward differences for the gradient approximation is about 1 sec.

First we need a criterion to decide, whether the result of a test run is considered as a successful
return or not. Let ε > 0 be a tolerance for defining the relative accuracy, xk the final iterate of a test
run, and x� the supposed exact solution known from the two test problem collections. Then we call the
output a successful return, if the relative error in the objective function is less than ε and if the maximum
constraint violation is less than ε2, i.e. if

f(xk) − f(x�) < ε|f(x�)| , if f(x�) <> 0

or
f(xk) < ε , if f(x�) = 0

and
r(xk) .= max(‖g(xk)+‖∞) < ε2 ,

where ‖ . . . ‖∞ denotes the maximum norm and gj(xk)+ .= −min(0, gj(xk)) for j > me and gj(xk)+ .=
gj(xk) otherwise.

We take into account that a code returns a solution with a better function value than the known
one within the error tolerance of the allowed constraint violation. However, there is still the possibility
that an algorithm terminates at a local solution different from the given one. Thus, we call a test
run a successful one, if the internal termination conditions are satisfied subject to a reasonably small
termination tolerance, and if in addition to the above decision,

f(xk) − f(x�) ≥ ε|f(x�)| , if f(x�) <> 0

or
f(xk) ≥ ε , if f(x�) = 0

and
r(xk) < ε2 .

For our numerical tests, we use ε = 0.01, i.e., we require a final accuracy of one per cent. Gradients
are approximated by the forward difference formula:

∂

∂xi
f(x) ≈ 1

ηi

(
f(x + ηiei) − f(x)

)
(24)

Here ηi = η max(10−5, |xi|) and ei is the i-th unit vector, i = 1, . . . , n. The tolerance η depends on the
difference formula and is set to η = ηm

1/2, where ηm is a guess for the accuracy by which function values
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non-monotone line search monotone line search
εerr nsucc nfunc ngrad nequ nsucc nfunc ngrad nequ

0 303 33 21 331 301 33 21 331
10−12 297 46 22 357 299 38 22 348
10−10 300 111 25 472 295 46 22 370
10−8 299 94 29 508 282 58 23 402
10−6 295 121 31 749 251 82 27 523
10−4 279 159 30 538 196 107 29 502
10−2 235 204 29 504 103 188 35 538

Table 2: Test Results for Forward Differences (24)

are computed, i.e., either machine accuracy in case of analytical formulae or an estimate of the noise level
in function computations. In a similar way, derivatives of constraints are computed.

The Fortran implementation of the SQP method introduced in the previous section, is called NLPQLP,
see Schittkowski [54]. Functions and gradients must be provided by reverse communication and the
quadratic programming subproblems are solved by the primal-dual method of Goldfarb and Idnani [16]
based on numerically stable orthogonal decompositions, see also Schittkowski [52]. NLPQLP is executed
with termination accuracy ACC=10−7 and the maximum number of iterations is MAXIT=500.

In the subsequent tables, we use the notation

number of successful test runs (according to above definition) : nsucc

number of runs with error messages of NLPQLP (IFAIL>0) : nerr

average number of function evaluations : nfunc

average number of gradient evaluations or iterations : ngrad

average number of equivalent function calls (function calls counted also
for gradient approximations)

: nequ

To get nfunc, we count each single function call, also in the case of several simulated processors,
P > 1. However, additional function evaluations needed for gradient approximations, are not counted.
Their total average number is ngradnfunc for the forward difference formula. One gradient computation
corresponds to one iteration of the SQP method.

To test the stability of the SQP method, we add some randomly generated noise to each function
value. Non-monotone and monotone line search is applied with a queue size of L = 30, and the serial
line search calculation by Algorithm 4.1 is required.

Table 2 shows the corresponding results for increasing random perturbations (εerr). The tolerance
for approximating gradients, ηm, is set to the machine accuracy in case of εerr = 0, and to the random
noise level otherwise.

The results are quite surprising and depend heavily on the new non-monotone line search strategy.
We are able to solve about 75 % of the test examples in case of extremely noisy function values with at
most two correct digits. In the monotone case, we can only solve about 30 % of all problems successfully

To investigate the situation in more detail, we list now the number of successful returns, nsucc, and
the number of test runs where NLPQLP terminated because of an error message IFAIL>0, nerr. The
results are listed in Table 3. They clearly indicate the advantage of non-monotone line searches over the
monotone ones. Robustness and stability of the SQP method are significantly increased especially in case
of large noise in the function evaluations.

A further series of test runs concerns the situation that a user fixes the tolerance η for gradient
approximations, e.g., to η = 10−7. This is a unlikely worst-case scenario and should only happen in a a
situation, where a black-box derivative calculation is used and where a user is not aware of the accuracy
by which derivatives are approximated. Whereas nearly all test runs break down with error messages for
the monotone line search and large random perturbations, the non-monotone line search is still able to
find to terminate in at least 30 % NLPQLP calls, see Table 4.

Now we investigate the question, how parallel line searches influence the overall performance. Table 5
shows the number of successful test runs, the average number of function calls, and the average number of
iterations or gradient evaluations, for an increasing number of simulated parallel calls of model functions
denoted by P .

P = 1 corresponds to the sequential case, when Algorithm 4.1 is applied for the line search, consisting
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non-monotone monotone
εerr nsucc nerr nsucc nerr

0 303 3 301 10
10−12 297 8 299 27
10−10 300 8 295 58
10−8 299 8 282 106
10−6 295 24 251 159
10−4 279 44 196 210
10−2 235 78 103 251

Table 3: Successful and Non-Successful Returns

non-monotone monotone
εerr nsucc nerr nsucc nerr

0 303 4 301 12
10−12 300 4 299 35
10−10 295 14 278 83
10−8 265 43 196 145
10−6 183 124 49 265
10−4 114 194 13 298
10−2 108 199 23 288

Table 4: Successful and Non-Successful Returns, η = 10−7

P nsucc nfunc ngrad

1 303 33 21
3 237 434 136
4 265 442 108
5 291 318 63
6 296 235 38
7 298 220 31
8 296 223 27
9 299 231 25

10 296 241 24
15 299 342 23
20 298 466 23
50 299 1,146 23

Table 5: Performance Results for Parallel Line Search
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of a quadratic interpolation combined with an Armijo-type bisection strategy. Since we need at least one
function evaluation for the subsequent iterate, we observe that the average number of additional function
evaluations needed for the line search, is about two.

In all other cases, P > 1 simultaneous function evaluations are made according to Algorithm 4.2.
Thus, the total number of function calls nfunc is quite big in Table 5. If, however, the number of
parallel machines is sufficiently large in a practical situation, we need only one simultaneous function
evaluation in each step of the SQP algorithm. To get a reliable and robust line search, we need at least 5
parallel processors. No significant improvements are observed, if we have more than 10 parallel function
evaluations.

The most promising possibility to exploit a parallel system architecture occurs, when gradients cannot
be calculated analytically, but have to be approximated numerically, for example by forward differences,
two-sided differences, or even higher order methods. Then we need at least n additional function calls,
where n is the number of optimization variables, or a suitable multiple of n.

6 Numerical Pitfalls

A particular advantage od SQP methods is their numerical stability and robustness. Only very few
parameters must be set to call the corresponding code, typically only the maximum number of iterations
and a termination tolerance. Nevertheless numerous pitfalls and traps exist which can occur during the
modelling process and which can prevent a successful and efficient solution. We show some remedies and
outline how to avoid them that at least in certain situations.

6.1 Inappropriate Termination Accuracy

Termination of an SQP algorithm depends on certain conditions, in our case summarized by some checks
(22), and a tolerance ε > 0. The choice of ε is crucial for the overall success of an optimization run. A too
small value could prevent successful termination completely, since internal round-off errors can prevent
satisfaction of (22). On the other hand, a too big value stops the algorithm at an intermediate iterate
and we do not know by sure, whether at least a local solution is approximated or not.

On the other hand, the calculation of a search direction mainly depends on the accuracy by which
gradients are computed. Objective function values, for example, are not part of the quadratic program-
ming subproblem (8) at all. Only the line search requires function values, but the strategy is to reach
the stopping criterion (20) as early as possible.

Thus, a reasonable recommendation is to choose an ε > 0 which is in the order or even a bit higher
than the accuracy by which gradients are computed.

6.2 Violation of Constraint Qualification

A certain regularity condition called constraint qualification is required for being able to formulate the
necessary optimality conditions, see Definition 2.3. However, also the local convergence theorems and
most solvers for the underlying quadric program depend on the validity of this assumption at least in
the neighborhood of an optimal solution. In general, it is not possible to validate this condition a priory
before starting an optimization algorithm. On the other hand, the evaluation of active constraints and
the rank determination of the Jacobian of the active constraints depends on a predetermined tolerance,
which is be difficult to setup a priory.

If an optimization problem (2) does not satisfy this assumption when approaching a local minimum,
the corresponding code typically slows down convergence speed and superlinear convergence is prevented.
In other cases, the SQP algorithm could stop because of numerical instabilities when trying to solve the
quadratic programming problem (8).

At least in some simple situations, it is possible to prevent violation of the constraint qualification.
Consider, for example, a problem with an equality constraint g(x) = 0, but the available implementation
is unable to handle equality constraints directly as is the case for many structural design optimization
codes. The straightforward transformation of each equality constraint to two inequality constraints of
the form g(x) ≥ 0 and −g(x) ≥ 0, however, should be prevented. In this case, the constraint qualification
is always violated.
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6.3 Non-Differentiable Model Functions

In most practical and complex applications, it not guaranteed that the model functions by which f(x)
and gj(x), j = 1, . . ., are computed, are continuously differentiable as required. A typical simple standard
situation is found if the nonlinear program consists of minimizing the maximum or the sum of absolute
values of differentiable functions f1(x), . . ., fp(x),

x ∈ IRn :

min max{fi(x) : i = 1, . . . , p}
gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

(25)

or

x ∈ IRn :

min
∑p

i=1 |fi(x)|
gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . , m .

(26)

In the first case, we add one additional variable and p additional constraints, and get

x ∈ IRn+1 :

min xn+1

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . ,m ,

fi(x) ≤ xn+1 , i = 1, . . . , p ,

(27)

in the second case, we add p additional variables and 2p additional constraints,

x ∈ IRn+p :

min
∑p

i=1 xn+i

gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

fi(x) ≤ xn+i , i = 1, . . . , p ,

fi(x) ≥ −xn+i , i = 1, . . . , p .

(28)

We obtain equivalent nonlinear programs of the form (2) which can be solved by any algorithm for smooth
optimization.

However, the general situation is much more complex and cannot be resolved in the same simple
way. Sometimes, a careful gradient calculation based on smooth approximations are applicable. In the
simulation code by which objective function and constraint function values are computed, one could try
to prevent typical situations leading to instabilities by hand, e.g., by smoothing techniques. For example,
the Kreiselmeier-Steinhauser function is often used to smoothen the maximum function by

Ψ(x) =
1
ρ

log

(
p∑

i=1

exp(ρfi(x)

)
.

6.4 Empty Feasible Domains

There is no mathematical criterion nor any applicable numerical method that allows us to detect whether
the feasible domain P of (2) is empty or not. Infeasible domains occur for example in case of modelling
errors or programming bugs, but also in a systematical way. The subsequent case study of Section 8, the
design of surface acoustic wave filters, is a typical example. If the design demands of a customer are too
stringent, the feasible domain of (37) is empty.

A simple remedy is to perform a certain regularization of (1) by introducing an additional variable
xn+1 of the form

x ∈ IRn+1 :

min f(x) + ρxn+1

gj(x) ≥ −xn+1 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu , xn+1 ≥ 0 .

(29)

For simplicity, we omit the equality constraints. A penalty parameter ρ is to reduce the additional
perturbation of the solution by xn+1 as much as possible, and must be chosen carefully.
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6.5 Undefined Model Function Values

SQP methods have a particular practical advantage. Linear constraints and bounds of variables remain
satisfied in all iterations, if the starting point x0 satisfies them. Thus, these constraints can be used to
prevent undefined function calls. For example, if the simulation code for computing f(x) or any of the
constraints gj(x), j = 1, . . ., m, contains an expression of the form log(aT x), it is recommended to add
a constraint of the form gm+1(x) .= aT x − ε, ε > 0.

In general, however, it is not possible to prevent a function call from the infeasible domain. If there
is an internal error code, one could try to return a function value of the form δ‖xk − x‖ with x ∈ P . But
if the corresponding constraint becomes active at a solution, we will run into an instability and an SQP
code will break done with an error message. In such a situation, it is recommended to shrink the feasible
set by replacing gj(x) by gj(x) − δ, δ > 0, and to adapt δ step-by-step.

6.6 Wrong Function and Variable Scaling

There is no way to find a general scaling routine which automatically predetermines perfect scaling
parameters for optimization variables and constraints. The goal is to find positive numbers by which all
functions and all individual variables are multiplied, so that, roughly speaking, a change of the scaled
variables in the order of one leads to an alteration of the scaled function values in the order of one.
However, these coefficients can be determined only at the very beginning of an optimization run based
on some information available at the starting point x0.

But depending on the application, it is sometimes possible to scale the problem in a suitable way.
If some constraints have a physical background to prevent them from exceeding an upper bound, for
example stress constraints in a mechanical structural optimization model, it is possible to normalize
them accordingly. A constraint of the form σ(x) ≤ σ0 with an upper stress limit σ0 could be replaced by
σ(x)
σ0

≤ 1, for example. Also non-negative variables for which reasonable upper bounds are available, i.e.,
bounds which a likely to be attained, can be scaled to remain between zero and one.

7 Case Study: Horn Radiators for Satellite Communication

Corrugated horns are frequently used as reflector feed sources for large space antennae, for example for
INTELSAT satellites. The goal is to achieve a given spatial energy distribution of the radio frequency
(RF) waves, called the radiation or directional characteristic. The transmission quality of the information
carried by the RF signals is strongly determined by the directional characteristics of the feeding horn as
determined by its geometric structure.

The electromagnetic field theory is based on Maxwell’s equations relating the electrical field E, the
magnetic field H, the electrical displacement, and the magnetic induction to electrical charge density and
current density, see Collin [9] or Silver [56]. Under some basic assumptions, particularly homogeneous
and isotropic media, Maxwell’s equations can be transformed into an equivalent system of two coupled
equations. They have the form of a wave equation,

∇2Ψ − c2 ∂2

∂t2
Ψ + f = 0

with displacement f enforcing the wave, and wave velocity c. Ψ is to be replaced either by E or H,
respectively.

For circular horns with rotational symmetry, the usage of cylindrical coordinates (ρ, φ, z) is advan-
tageous, especially since only waves propagating in z direction occur. Thus, a scalar wave equation in
cylindrical coordinates can be derived from which general solution is obtained, see for example Collin [9]
for more details.

By assuming that the surface of the wave guide has ideal conductivity, and that homogeneous Dirichlet
boundary conditions Ψ = 0 for Ψ = E and Neumann boundary conditions ∂Ψ/∂n = 0 for Ψ = H at the
surface are applied, we get the eigenmodes or eigenwaves for the circular wave guide. Since they form a
complete orthogonal system, electromagnetic field distribution in a circular wave guide can be expanded
into an infinite series of eigenfunctions, and is completely described by the amplitudes of the modes. For
the discussed problem, only the transversal eigenfunctions of the wave guides need to be considered and
the eigenfunctions of the circular wave guide can be expressed analytically by trigonometric and Bessel
functions.
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In principle, the radiated far field pattern of a horn is determined by the field distribution of the waves
emitted from the aperture. On the other hand, the aperture field distribution itself is uniquely determined
by the excitation in the feeding wave guide and by the interior geometry of the horn. Therefore, assuming
a given excitation, the far field is mainly influenced by the design of the interior geometry of the horn.
Usually, the horn is excited by the TE11 mode, which is the fundamental, i.e., the first solution of the
wave equation in cylindrical coordinates. In order to obtain a rotational symmetric distribution of the
energy density of the field in the horn aperture, a quasi-periodical corrugated wall structure according to
Figure 5 is assumed, see Johnson and Jasik [27].

Figure 5: Cross Sectional View of a Circular Corrugated Horn

To reduce the number of optimization parameters, the horn geometry is described by two envelope
functions from which the actual geometric data for ridges and slots can be derived. Typically, a horn
is subdivided into three sections, see Figure 6, consisting of an input section, a conical section, and an
aperture section. For the input and the aperture section, the interior and outer shape of slots and ridges
is approximated by a second-order polynomial, while a linear function is used to describe the conical
section. It is assumed that the envelope functions of ridges and slots are parallel in conical and aperture
section. By this simple analytical approach, it is possible to approximate any reasonable geometry with
sufficient accuracy by the design parameters.

Figure 6: Envelope Functions of a Circular Corrugated Horn

A circular corrugated horn has a modular structure, where each module consists of a step transition
between two circular wave guides with different diameters, see Figure 7. The amplitudes of waves,
travelling towards and away from the break point, are coupled by a so-called scattering matrix. By
combining all modules of the horn step by step, the corresponding scattering matrix describing the total
transition of amplitudes from the entry point to the aperture can be computed by successive matrix
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operations, see Hartwanger et al. [22] or Mittra [30].

Figure 7: Cross Sectional View of One Module

From Maxwell’s equations, it follows that the tangential electrical and magnetic field components
must be continuous at the interface between two wave guides. This continuity condition is exploited to
compute a relation between the mode amplitudes of the excident bk

E,j , bk
H,j and incident ak

E,j , ak
H,j waves

in each wave guide of a module, see Figure 7, k = 1, 2. Then voltage and current coefficients Uk
H,j , Uk

E,j ,
Ik
H,j , and Ik

E,j are defined by the amplitudes.
As mentioned before, the tangential fields must be continuous at the transition between two wave

guides. Moreover, boundary conditions must be satisfied, E2 = 0 for r1 ≤ r ≤ r2. Now only n1 eigenwaves
in region 1 and n2 eigenwaves in region 2 are considered. The electric field in area 1 is expanded subject
to the eigenfunctions in area 2 and the magnetic field in area 2 subject to the eigenfunctions in area 1.
After some manipulations, in particular interchanging integrals and finite sums, the following relationship
between voltage coefficients in region 1 and 2 can be formulated in matrix notation,(

U2
E

U2
H

)
=

(
XEE XHE

XEH XHH

)(
U1

E

U1
H

)
. (30)

Here Uk
E and Uk

H are vectors consisting of the coefficients Uk
E,j and Uk

H,j for j = 1, . . . , nk, respectively,
k = 1, 2. The elements of the matrix XEE are given by

Xij
EE =

∫ r2

0

∫ 2π

0

e2
E,i(ρ, z, φ)T e1

E,j(ρ, z, φ) ρ dφ dρ (31)

with tangential field vectors ek
E,i(ρ, z, φ) for both regions k = 1 and k = 2. In the same way XHE , XEH ,

and XEE are defined. Moreover, matrix equations for the current coefficients are available.
Next, the relationship between the mode amplitude vectors bk

E and bk
H of the excident waves bk

E,j ,
bk
H,j , and ak

E and ak
H of the incident waves ak

E,j , ak
H,j , j = 1, . . . , nk, k = 1, 2, are evaluated through a

so-called scattering matrix. By combining all scattering matrices of successive modules, we compute the
total scattering matrix relating the amplitudes at the feed input with those at the aperture,(

b1(x)
b2(x)

)
=

(
S�

11(x) S�
12(x)

S�
21(x) S�

22(x)

)(
a1

a2

)
. (32)

The vector a1 describes the amplitudes of the modes exciting the horn, the TE11 mode in our case. Thus,
a1 is the 2n1-dimensional unity vector. The vector a2 contains the amplitudes of the reflected modes at
the horn aperture, known from the evaluation of the far field. Only a simple matrix × vector computation
is performed to get the modes of reflected waves b1(x) and b2(x), once the scattering matrix is known.

The main goal of the optimization procedure is to find an interior geometry x of the horn so that the
distances of b2(x)j from given amplitudes b

j

2 for j = 1, . . . , 2n2 become as small as possible. The first
component of the vector b1(x) is a physically significant parameter, the so-called return loss, representing
the power reflected at the throat of the horn. Obviously, this return loss should be minimized as well.
The phase of the return loss and further components of b1(x) are not of interest.

From these considerations, the least squares optimization problem

x ∈ IRn :
min

∑2n2
j=1 (bj

2(x) − b
j

2)
2 + µ b1

1(x)2

xl ≤ x ≤ xu

(33)
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name xi
0 xi

opt comment
x1 50.0 111.85 length of input section
xcon 50.0 0.00 length of conical section
xo 50.0 47.00 length of output section
α 28.0 29.00 semi flare angle of conical section
q 0.25 0.20 quotient of slot and ridge width
t1 12.5 11.97 depth of first slot in input section
t2 7.2 7.82 depth of slots in conical section

Table 6: Initial and Optimal Parameter Values

is obtained. The upper index j denotes the j-th coefficient of the corresponding vector, µ a suitable
weight, and xl, xu lower and upper bounds for the parameters to be optimized. Note also that complex
numbers are evaluated throughout this section, leading to a separate evaluation of the regression function
of (33) for the real and imaginary parts of bj

2(x).
The least squares problem is solved by a special variant of NLPQL called DFNLP, see Schittkowski [46,

53], which retains main features of a Gauss-Newton method after a certain transformation. For a typical
test run under realistic assumptions, the radius of the feeding wave guide, and the radius of the aperture
are kept constant, rg = 11.28mm and ra = 90.73mm, where 37 ridges and slots are assumed. Parameter
names, initial values x0, and optimal solution values xopt are listed in Table 7. The number of modes,
needed to calculate the scattering matrix, is 70. Forward differences are used to evaluate numerical
derivatives subject to a tolerance of 10−7, and µ = 1 was set for weighting the return loss. NLPQL
needed 51 iterations to satisfy the stopping tolerance 10−7.

8 Case Study: Design of Surface Acoustic Wave Filters

Computer-aided design optimization of electronic components is a powerful tool to reduce development
costs on one hand and to improve the performance of the components on the other. A bandpass filter
selects a band of frequencies out of the electro-magnetic spectrum. In this section, we consider surface-
acoustic-wave (SAW) filters consisting of a piezo-electric substrate, where the surface is covered by metal
structures. The incoming electrical signal is converted to a mechanical signal by this setup. The SAW
filter acts as a transducer of electrical energy to mechanical energy and vice versa. The efficiency of the
conversion depends strongly on the frequencies of the incoming signals and the geometry parameters of
the metal structures, for example length, height, etc. On this basis, the characteristic properties of a
filter are achieved.

Due to small physical sizes and unique electrical properties, SAW-bandpass filters raised tremendous
interest in mobile phone applications. The large demand of the mobile phone industry is covered by
large-scale, industrial mass-production of SAW-filters. For industrial applications, bandpass filters are
designed in order to satisfy pre-defined electrical specifications. The art of filter design consists of defining
the internal structure, or the geometry parameters, respectively, of a filter such that the specifications are
satisfied. The electrical properties of the filters are simulated based on physical models. The simulation
of a bandpass filter consists of the acoustic tracks, i.e., the areas on the piezo-electrical substrate on which
the electrical energy is converted to mechanical vibrations and vice versa, and the electrical combinations
of the different acoustic tracks. Typically, only the properties of the acoustic tracks are varied during the
design process, and are defined by several physical parameters. As soon as the filter properties fit to the
demands, the mass production of the filter is started.

When observing the surface of a single-crystal, we see that any deviation of an ion from its equilibrium
position provokes a restoring force and an electrical field due to the piezo-electric effect. Describing the
deviations of ions at the surface in terms of a scalar potential, we conclude that the SAW is described by
a scalar wave equation

φtt = c2∆φ . (34)

The boundary conditions are given by the physical conditions at the surface and are non-trivial, since
the surface is partly covered by a metal layer. In addition, the piezo-electric crystal is non-isotropic, and

23



�

�

�

�

� �

�a1

�
b1

�

a2�

b2

� u

�i

P

Figure 8: Base Cell of the P-Matrix Model with Two Acoustic and One Electric Port

the velocity of the wave depends on its direction. For the numerical simulation, additional effects such
as polarization charges in the metal layers have to be taken into account. Consequently, the fundamental
wave equation is not solvable in a closed form.

For this reason, Tobolka [59] introduced the P-matrix model as an equivalent mathematical description
of the SAW. One element is a simple base cell, which consists of two acoustic ports, and an additional
electric port. The acoustic ports describe the incoming and outgoing acoustic signals, the electrical ports
the electric voltage at this cell, see Figure 8. The quantities a1, a2, b1 and b2 denote the intensities of the
acoustic waves. In terms of a description based on the wave equation, we have a1 ∝ φ, u is the electrical
voltage at the base cell, and i is the electrical current.

The P-matrix model describes the interaction of the acoustic waves at the acoustic ports, with the
electric port in linear form. Typically, a transformation is given in the form⎛

⎝ b1

b2

i

⎞
⎠ = P

⎛
⎝ a1

a2

u

⎞
⎠ , (35)

where for example

P =

⎛
⎝ 0 1 E

1 0 −E∗

−2E 2E∗ 2|E|2 + i(−H{2|E|2} + ωC)

⎞
⎠ . (36)

H denotes the Hilbert transformation, C the static capacity between two fingers, E the excitation given
by

E = −i 0.5
√

ωWK ·
∫
tr

σe(x) exp−ik|x| dx ,

ω the frequency, W the aperture of the IDT, K a material constant, and σe the electric load distribution.
In general, the elements of P are the dimensionless acoustic reflection and transmission coefficients in

the case of a short-circuited electrical port. The 2×2 upper diagonal submatrix is therefore the scattering
matrix of the acoustic waves and describes the interaction of the incoming and outgoing waves. Other
elements characterize the relation of the acoustic waves with the electric voltage, i.e., the piezo-electric
effect of the substrate, or the admittance of the base cell, i.e., the the quotient of current to voltage and
the reciprocal value of the impedance.

Proceeding from the P-matrix model, we calculate the scattering matrix S. This matrix is the basic
physical unit that describes the electro-acoustic properties of the acoustic tracks, and finally the filter
itself. The transmission coefficient T is one element of the scattering matrix, T = S21.

Mobile phone manufacturers provide strict specifications towards the design of a bandpass filter.
Typically, the transmission has to be above certain bounds in the pass band and below certain bounds in
the stop band depending on the actual frequency. These specifications have to be achieved by designing
the filter in a proper way. Depending on the exact requirements upon the filter to be designed, different
optimization problems can be derived.

To formulate the optimization problem, let us assume that x ∈ IRn denotes the vector of design
variables. By T (f, x) we denote the transmission subject to frequency f and the optimization variable
vector x. Some disjoint intervals R0, . . ., Rs define the design space within the frequency interval
fl ≤ f ≤ fu. Our goal is to maximize the minimal distance of transmission T (f, x) over the interval R0,
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Figure 9: Design Goals of an SAW Filter

under lower bounds T1, . . ., Ts for the transmission in the remaining intervals R1, . . ., Rs. Moreover, it
is required that the transmission is always above a certain bound in R0, i.e., that T (f, x) ≥ T0 for all
f ∈ R0. The optimization problem is formulated as

x ∈ IRn :

max min {T (f, x) : f ∈ R0}
T (f, x) ≤ Ti for f ∈ Ri , i = 1, . . . , s ,

x ≤ x ≤ x , .

(37)

Here x and x ∈ IRn are lower and upper bounds for the design variables.
To transform the infinite dimensional optimization problem into a finite dimensional one, we proceed

from a given discretization of the frequency variable f by an equidistant grid in each interval. The
corresponding index sets are called J0, J1, . . ., Js. Let l be the total number of all grid points. First
we introduce the notation Tj(x) = T (fj , x), fj suitable grid point, j = 1, . . ., l. All indices are ordered
sequentially so that {1, . . . , l} = J0 ∪ J1 ∪ . . . ∪ Js, i.e., J0 = {1, . . . , l0}, J1 = {l0 + 1, . . . , l1}, . . .,
Js = {ls−1 + 1, . . . , l}. Then the discretized optimization problem is

x ∈ IRn :

max min {Tj(x) : j ∈ J0}
Tj(x) ≤ Ti for j ∈ Ji , i = 1, . . . , s ,

x ≤ x ≤ x , .

(38)

The existence of a feasible design is easily checked by performing the test Tj(x) ≥ T0 for all j ∈ J0.
Problem (38) is equivalent to a smooth nonlinear program after a simple standard transformation. For
more details, see Bünner et. al [8], where also integer variables are taken into account.

Lower and upper bounds for the ten design variables under consideration are shown in Table 7 together
with initial values and final ones obtained by the code NLPQL. Simulation is performed with respect to
154 frequency points leading to 174 constraints. Altogether 56 iterations of NLPQL are needed.

9 Conclusions

A brief introduction is presented to illustrate optimality conditions for differentiable nonlinear programs.
It is quite easy to derive the basic iteration step of an SQP method, which can be considered as a
Newton step for satisfying the optimality conditions. We present a modification of an SQP algorithm
designed for execution under noisy function values and/or a parallel computing environment (SPMD) and
where a non-monotone line search is applied in error situations. Numerical results indicate stability and
robustness for a set of more than 300 standard test problems. It is shown that not more than 6 parallel
function evaluation per iterations are required for conducting the line search. Significant performance
improvement is achieved by the non-monotone line search especially in case of noisy function values and
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variable lower bound initial value optimal value upper bound
x1 5.0 11.58 9.589 15.0
x2 50.0 50.0 92.39 150.0
x3 10.5 11.39 11.25 11.5
x4 10.0 10.61 10.62 11.0
x5 0.3 0.3 0.3 0.5
x6 0.95 1.033 1.031 1.05
x7 0.95 1.031 1.023 1.05
x8 0.95 1.012 1.015 1.02
x9 0.985 1.001 0.998 1.03
x10 1.0 1.0 1.000 1.03

Table 7: Bounds, Initial, and Optimal Values for Design Variables

numerical differentiation. With the new non-monotone line search, we are able to solve about 80 % of
the test examples in case of extremely noisy function values with at most two correct digits and forward
differences for derivative calculations. Two industrial case studies from electrical engineering are outlined
which show the complexity of practical simulation models and the applicability of SQP algorithms.
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