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Abstract:

We consider a numerical method for constrained nonlinear programming, that is widely used in mechanical
engineering and that is known under the name SCP for sequential convex programming. The algorithm
consists of solving a sequence of convex and separable subproblems, where an augmented Lagrangian merit
function is used for guaranteeing convergence. Originally, SCP methods were developed in structural me-
chanical optimization, and are particularly applied to solve topology optimization problems. A new challenge
for SCP methods is the solution of free material optimization (FMO) problems which contain additional semi-
definite variables and even nonlinear semi-definite matrix constraints. A few formulations are investigated
in more details and possible solution approaches are outlined.
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1 Introduction

Sequential convex programming (SCP) algorithms are based on the observation that in some special cases,
typical structural constraints become linear in the inverse variables. Although this special situation is rarely
observed in practice, a suitable substitution by inverse variables depending on the sign of the corresponding
partial derivatives and subsequent linearization is expected to linearize model functions somehow.

More general convex approximations are introduced by Svanberg [20] known under the name method
of moving asymptotes (MMA). The goal is always to construct convex and separable subproblems, for
which efficient solvers are available. Thus, we denote this class of methods by SCP, an abbreviation for
sequential convex programming. The resulting algorithm is very efficient for solving mechanical engineering
problems, if a proper starting point is available and if only a crude approximation of the optimal solution
needs to be computed because of certain side conditions, for example calculation time or round-off errors
in objective function and constraints. Some comparative numerical tests of SCP, SQP, and some other
nonlinear programming codes are available for test problems from mechanical structural optimization, see
Schittkowski, Zillober, and Zotemantel [17].

The computer code under investigation is the SCP routine SCPIP of Zillober [23, 21], an implementation
of the method of moving asymptotes (MMA). Strictly convex and fully separable subproblems are solved
by an interior point method combined with an active set strategy. Sparsity of the Jacobian matrix of the
constraints is taken into account.

Topology optimization is one of the main areas, where SCP methods are applied. The idea is to distribute
mass within a given volume, so that the global compliance of the structure is minimized. Since the number
of the finite elements is often very big depending on the desired discretization accuracy, large nonlinear
programs must be solved iteratively. The number of variables can be in the order of 105 to 106 or even more,
see Zillober, Schittkowski and Moritzen [25]. In addition, more realistic structures require constraints for
each element leading to a large number of nonlinear inequality constraints of the same order of magnitude.

In the subsequent section, we briefly outline SCP methods and especially the structure of the convex
subproblems. Free material optimization is discussed in Section 3 where we show some proposals to handle
semi-definite and diagonally dominant matrix variables depending on material properties. In Section 4
further nonlinear constraints for displacements, stresses, and global stability like buckling or vibration are
introduced. The relationship to the PLATO-N software architecture and alternative approaches provided by
the Technion is shown.

2 Sequential Convex Programming (SCP) Methods

We consider nonlinear optimization problems of the kind

(P)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min f(x)

s.t. cj(x) = 0 , j = 1, . . . , meq

cj(x) ≤ 0 , j = meq + 1, . . . , mc

x ∈ R
n

where f(x) and cj(x), j = 1, . . . , mc, are twice continuously differentiable scalar functions.
Our goal is to create a sequence of convex and separable subproblems which are easy to solve due to their

special structure, as illustrated in Figure 1. The corresponding solutions converge to the optimal solution of
the original problem under some quite general assumptions.
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Figure 1: Procedure of MMA-Algorithm

One of the most important features of SCP methods based on the MMA technique is the introduction of
two flexible asymptotes for each coefficient i of the optimization variable xk in the k-th iteration, i = 1, . . .,
n. These asymptotes, an upper one Uk

i and a lower one Lk
i , reduce the feasible region and allow to control the

curvature of a merit function, e.g., an augmented Lagrangian function, see Zillober [24]. Nonlinear equality
constraints are linearized as in case of SQP methods. The strictly convex and separable subproblems possess
diagonal Hessian matrices of the Lagrangian function which are explicitly known, and are solved by an
interior point method taking sparsity patterns of the Jacobian matrix into account.

Objective function and the inequality constraints are linearized subject to the transformed variables
1

Uk
i − xi

or
1

xi − Lk
i

, respectively. Thus, the resulting approximation of the objective function at the k-th

iterate xk is

fk(x) := f(xk) +
∑
Ik
+

(
∂f(xk)

∂xi
(Uk

i − xk
i )2
(

1
Uk

i − xi
− 1

Uk
i − xk

i

)
+ τk

i

(xi − xk
i )2

Uk
i − xi

)

− ∑
Ik
−

(
∂f(xk)

∂xi
(xk

i − Lk
i )2
(

1
xi − Lk

i

− 1
xk

i − Lk
i

)
− τk

i

(xi − xk
i )2

xi − Lk
i

)
with Ik

+ :=

{i| ∂f(xk)
∂xi

≥ 0}, Ik− := {i| ∂f(xk)
∂xi

< 0}, 0 < Lk
i < xi < Uk

i . τk
i are positive parameters, which are

introduced to guarantee strict convexity of the approximated objective function. Equality constraints cj(x),
j = 1, . . ., meq are linearized in the form

ck
j (x) := cj(xk) +

n∑
i=1

∂cj(xk)
∂xi

(xi − xk
i )

for j = 1, . . ., meq. The nonlinear inequality constraints cj(x) for j = meq +1, . . ., mc are approximated by

ck
j (x) := cj(xk) +

∑
I
(j,k)
+

∂cj(xk)
∂xi

(Uk
i − xk

i )2
(

1
Uk

i − xi
− 1

Uk
i − xk

i

)

− ∑
I
(j,k)
−

∂cj(xk)
∂xi

(xk
i − Lk

i )2
(

1
xi − Lk

i

− 1
xk

i − Lk
i

)

3



with I
(j,k)
+ := {i| ∂cj(xk)

∂xi
≥ 0}, I

(j,k)
− := {i| ∂cj(xk)

∂xi
< 0} and the asymptotes are 0 < Lk

i < xk
i < Uk

i .

With these definitions, we obtain the subproblem

(P k
sub)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min fk(x)

s.t. ck
j (x) = 0 , j = 1, . . . , meq

ck
j (x) ≤ 0 , j = meq + 1, . . . , mc

x′ ≤ x ≤ x′ ,

x ∈ R
n

where x′ and x′ are suitable lower and upper bounds for x taking the asymptotes into account. This
approximation of the nonlinear programming problem (P) is strictly convex and of first order, i.e.,

fk(xk) = f(xk), ck
j (xk) = cj(xk),

∇fk(xk) = ∇f(xk), ∇ck
j (xk) = ∇cj(xk),

j = 1,

. . ., mc. The resulting subproblem (P k
sub) is solved by an interior point method, where the structure of the

diagonal Hessian matrices is exploited. The asymptotes are adapted in a special way, see Zillober [24] for
more details and Figure 2 for an illustration.

Figure 2: Method of Moving Asymptotes, Ertel [5].

Sequential convex programming methods are extensions of the method of moving asymptotes (MMA).
They contain an additional merit function and a corresponding line-search algorithm. A possible merit
function of (P) is the augmented Lagrangian function Φρ for a given set of penalty parameters ρj > 0, j = 1,
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. . ., mc,

Φρ(x, y) = f(x) +
meq∑
j=1

(yjcj(x) +
ρj

2
c2
j(x))

+
mc∑

j=meq+1

⎧⎪⎨
⎪⎩

yjcj(x) +
ρj

2
c2
j(x), if − yj

ρj
≤ cj(x)

− y2
j

2ρj
, else,

see also Schittkowski [16] for its usage as part of an SQP method. The merit function combines the objective
function and constraints controlled by penalty parameters ρj , which must be carefully adapted by the
algorithm, and possesses the following basic properties:

1. A point (x�, y�) is a stationary point for Φρ, if and only if (x�, y�) is stationary for (P).

2. Under certain conditions there exists ρ ∈ R
m, 0 < ρ, such that x� is a local minimizer for Φρ(x, y�) for

all ρ ≥ ρ.

The SCP algorithm can be summarized as follows:

Step 0: Choose starting value x0 and let k := 0.
Step 1: Determine Lk

i and Uk
i and compute fk(xk), ck

j (xk), j = 1, . . ., mc.

Step 2: Solve (P k
sub). Let (zk, vk) a KKT-point, where vk is the multiplier vector.

Step 3: If zk = xk, then stop. (xk, yk)T is considered as a solution.
Step 4: Let pk := (zk − xk, vk − yk).
Step 5: Perform line search with respect to Φ(xk, yk) along direction pk to get

a steplength σk with a sufficient reduction of the merit function.
Step 6: Let (xk+1, yk+1) = (xk, yk) + σkpk and set k := k + 1.
Step 7: Compute ∇f(xk), ∇cj(xk), j = 1, . . ., mc, and goto Step 1.

3 Free Material Optimization (FMO)

3.1 The General FMO Problem

Free material optimization (FMO) is an extension of topology optimization, where we try to find the optimal
material distribution in form of elasticity tensors, see Bendsøe and Sigmund [4] and Zowe, Kočvara, and
Bendsøe [26] for a more extensive description. FMO tries to find the best mechanical structure with respect
to one or more given loads in the sense of minimal weight, maximal stiffness, or any other criterion. The
material itself, as well as its distribution in the available space, can be varied.

A large number of different formulations of FMO problems is found in Kočvara et al. [9]. Depending on
material properties, the number of load cases, the desired design criterion and the imposed constraints, there
are nonlinear nonconvex semidefinite programs, nonlinear convex semidefinite programs, linear semidefinite
programs, or nonconvex quadratic semidefinite programs. In this report, we only describe nonlinear, non-
convex FMO problems. In the other situations mentioned, alternative algorithms are available based on
different mathematical methods.

As shown by Kočvara and Stingl [10], the general FMO problem can be formulated by a nonlinear,
nonconvex semidefinite program (NSDP), where L load cases are taken into account. Design variables are
matrices Ei that represent material properties, i.e., the elasticity tensors, which are symmetric and positive
semidefinite for i = 1, . . ., m, m number of elements of the discretized mechanical structure,
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(NSDP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
m∑

i=1

Trace(Ei)

s.t. Ei � 0 , i = 1, . . . , m

ρ ≤ Trace(Ei) ≤ ρ , i = 1, . . . , m ,

fT
l K(E)−1fT

l ≤ γ , l = 1, . . . , L

E = (E1, . . . , Em) ∈ R
n(d×d)

where

K(E) =
m∑

i=1

Ki(E) =
m∑

i=1

nig∑
j=1

BT
ijEiBij

is the global stiffness matrix and where E = (E1, . . . , Em) denotes the set of all elasticity matrices. In the
two dimensional space, each Ei is a 3×3 matrix, while in the three dimensional space we get 6×6 matrices,
see Zowe, Kočvara, and Bendsøe [26], i.e.,

Ei =

⎡
⎣ Ei1111 Ei1122

√
2Ei1112

Ei1122 Ei2222

√
2Ei2212√

2Ei1112

√
2Ei2212 2Ei1212

⎤
⎦

or

Ei =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ei1111 Ei1122 Ei1133

√
2Ei1112

√
2Ei1113

√
2Ei1123

Ei1122 Ei2222 Ei2233

√
2Ei2212

√
2Ei2213

√
2Ei2223

Ei1133 Ei2233 Ei3333

√
2Ei3312

√
2Ei3313

√
2Ei3323√

2Ei1112

√
2Ei2212

√
2Ei3312 2Ei1212 2Ei1213 2Ei1223√

2Ei1113

√
2Ei2213

√
2Ei3313 2Ei1213 2Ei1313 2Ei1323√

2Ei1123

√
2Ei2223

√
2Ei3323 2Ei1223 2Ei1323 2Ei2323

⎤
⎥⎥⎥⎥⎥⎥⎦

The indices follow the usual tensor notation.
To analyze the two systems in more detail, we assume that Hooke’s law is valid, i.e., that stresses are

linear functions of the strains. The constitutive equation in tensor notation is

σij︸︷︷︸
stress

= Eijkl︸ ︷︷ ︸
elasticity tensor

εkl(u)︸ ︷︷ ︸
strain

,

see Zowe, Kočvara, and Bendsøe [26], where i, j, k, l ∈ {1, 2} in the 2-dimensional and i, j, k, l ∈ {1, 2, 3} in
the 3-dimensional case. Using the Einstein summation convention, we have

σij = Eijklεkl =
3∑

k=1

3∑
l=1

Eijklεkl

For σ11, for example, we obtain after exchanging i by j, k by l and ij by kl

σ11 = E11klεkl =
3∑

k=1

3∑
l=1

E11klεkl

= E1111ε11 + E1112ε12 + E1113ε13 + E1121ε21 + E1122ε22 + E1123ε23 + E1131ε31

+E1132ε32 + E1133ε33

= E1111ε11 + 2E1112ε12 + 2E1113ε13 + E1122ε22 + 2E1123ε23 + E1133ε33
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Analogously, we get similar expressions for σ22, . . ., σ32. Furthermore, we know that σ12 = σ21, σ23 = σ32

and σ13 = σ31, and get the stress and strain tensors

σij =

⎡
⎣ σ11 σ12 σ13

σ21 σ22 σ23

σ13 σ23 σ33

⎤
⎦ εij =

⎡
⎣ ε11 ε12 ε13

ε21 ε22 ε23
ε13 ε23 ε33

⎤
⎦

In vector notation, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ13

σ23

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

E1111 E1122 E1133 2E1112 2E1113 2E1123

E1122 E2222 E2233 2E2212 2E2213 2E2223

E1133 E2233 E3333 2E3312 2E3313 2E3323

E1112 E2212 E3312 2E1212 2E1213 2E1223

E1113 E2213 E3313 2E1213 2E1313 2E1323

E1123 E2223 E3323 2E1223 2E1323 2E2323

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
ε12
ε13
ε23

⎤
⎥⎥⎥⎥⎥⎥⎦

To get a symmetric matrix, Eijkl, σ12, σ13, σ23, ε12, ε13 and ε23 are multiplied by
√

2, leading to⎡
⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33√
2σ12√
2σ13√
2σ23

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ei1111 Ei1122 Ei1133
√

2Ei1112
√

2Ei1113
√

2Ei1123

Ei1122 Ei2222 Ei2233
√

2Ei2212
√

2Ei2213
√

2Ei2223

Ei1133 Ei2233 Ei3333
√

2Ei3312
√

2Ei3313
√

2Ei3323
√

2Ei1112
√

2Ei2212
√

2Ei3312 2Ei1212 2Ei1213 2Ei1223
√

2Ei1113
√

2Ei2213
√

2Ei3313 2Ei1213 2Ei1313 2Ei1323
√

2Ei1123
√

2Ei2223
√

2Ei3323 2Ei1223 2Ei1323 2Ei2323

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33√
2ε12√
2ε13√
2ε23

⎤
⎥⎥⎥⎥⎥⎥⎦

In the framework of PLATO-N, (NSDP) is to be solved by a new variant of the SCP algorithm handling
semi-definite matrix variables and matrix constraints. The code SCPIP of Zillober [24] serves as our initial
implementation and is to be gradually extended. The approaches considered for solving the primal program
(NSDP), are illustrated in Figure 3 together with some others for solving the dual convex and linear semi-
definite programs. These are:

1. SCPIP for non-convex problems with diagonally dominant matrix variables,

2. SCPIP for non-convex problems with positive semi-definite matrix variables,

3. Convex approximation of semi-definite matrix constraint,

4. CONERML (Technion) for convex problems with semi-definite matrix variables,

5. Linear approximation of semi-definite matrix constraint.
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Figure 3: Approaches to solve FMO

In the subsequent sections, we consider only the 2-dimensional space to simplify the notation.

3.2 Cholesky Factorization of Positive Semi-Definite Matrix Variables

The idea of this approach is to generate an optimization problem without semi-definite matrix variables,
which is directly solved by the code SCPIP. The constraints Ei � 0, i = 1, . . ., m, are omitted by optimizing
directly the Cholesky factors of Ei, i.e., we assume that Ei = DiD

T
i and consider the lower triangular

matrices Di � 0, i = 1, . . ., m, as optimization variables. It is important to note that linear constraints in
Ei become nonlinear in the new variables Di.

Consider

Di =

⎡
⎣ di1 0 0

di2 di3 0
di4 di5 di6

⎤
⎦

Then we get Ei by

Ei =

⎡
⎣ d2

i1 di1di2 di1di4

di2di1 d2
i2 + d2

i3 di2di4 + di3di5

di1di4 di2di4 + di3di5 d2
i4 + d2

i5 + d2
i6

⎤
⎦

The FMO problem (NSDP) is now replaced by a nonlinear Cholesky decomposition approach (NCDA)
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(NCDA)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
m∑

i=1

6∑
j=1

d2
ij

s.t. ρ ≤
6∑

j=1

d2
ij ≤ ρ , i = 1, . . . , m

fT
l K(D)−1fT

l ≤ γ , l = 1, . . . , L

dij ∈ R , i = 1, . . . , m, j = 1, . . . , 6

where

K(D) =
m∑

i=1

Ki(D) =
m∑

i=1

nig∑
j=1

BT
ijDiD

T
i Bij

and D = (D1, . . . , Dm) with lower triangular matrices Di. nig is the number of Gaussian integration points.
See Kočvara et al. [9] for a more detailed definition of the block matrices Bij . The general assumption that
elasticity tensors have to be positive semi-definite, permits anisotropic materials.

3.3 Diagonal Dominant Matrix Variables

For isotropic materials, elasticity tensors Ei have a more restrictive structure, see Pedersen [15],

Ei =

⎡
⎣ Ei1111 Ei1122 0

Ei1122 Ei1111 0
0 0 Ei1111 − Ei1122

⎤
⎦

These matrices must be positive semi-definite as before, but in addition diagonally dominant. Due to the
special structure of Ei, both assumptions lead to the inequality constraints

Ei1111 ≥ 0
Ei1111 ≥ |Ei1122|

To get twice differentiable constraints, the absolute values are replaced by two linear inequality constraints,

Ei1111 ≥ 0
Ei1111 ≥ −Ei1122

Ei1111 ≥ Ei1122

Thus, we get an alternative, simpler optimization problems called the nonlinear diagonally dominant
approach,

(NDDA)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
m∑

i=1

3Ei1111 − Ei1122

s.t. ρ ≤ 3Ei1111 − Ei1122 ≤ ρ , i = 1, . . . , m

fT
l K(E)−1fT

l ≤ γ , l = 1, . . . , L

Ei1111 ≥ 0 , i = 1, . . . , m

Ei1111 + Ei1122 ≥ 0 , i = 1, . . . , m

Ei1111 − Ei1122 ≥ 0 , i = 1, . . . , m

Ei1111, Ei1122 ∈ R i = 1, . . . , m
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where

K(E) =
m∑

i=1

Ki(E) =
m∑

i=1

nig∑
j=1

BT
ijE

T
i Bij

and E = (E1, . . . , Em) with above matrices Ei. nig is the number of Gaussian integration points. Again, see
Kočvara et al. [9] for a more detailed definition of the block matrices Bij . The resulting problem possesses
a large number of sparse linear constraints, and is to be solved by SCPIP.

4 Displacement, Stress, and Stability Constraints

By additional constraints, bounds for displacements, stresses, vibrations and buckling are defined depending
on the underlying FMO formulation.

Linear constraints on displacements can be imposed in selected areas in terms of

CK(E)−1f l ≤ d ,

l = 1, . . . , L. The matrix C serves to select nodes or combination of nodes for which displacements are to
be restricted.

Stress constraints are highly important from the engineering point of view. However, exact formulation is
still difficult. Stress constraints sometimes lead to optimization problems that do not satisfy the constraint
qualification, see Kočvara and Stingl [10]. Local bounds can be declared in form of Kočvara et al. [9],

nig∑
k=1

‖EBikK(E)−1f l‖2
H ≤ sσρ2 ,

i = 1, . . ., m, l = 1, . . ., L.
Vibrations lead to linear stability constraints of the form K(E) + λ̂M(E) � 0 with the mass matrix

M(E) =
m∑

i=1

Trace(Ei)Mi

and Mi = PiM̂iP
T
i . The matrices Mi are positive semidefinite and have the same nonzero structure as the

element stiffness matrices Ki, see Kočvara et al. [9] for details.
The stability constraints for avoiding buckling require K(E)+G(Ei) � 0 for all load cases and elements,

l = 1, . . ., L, i = 1, . . ., m. G(Ei) is the geometry stiffness matrix, see Kočvara and Stingl [13], defined by

G(Ei) := PT

(
m∑

i=1

nig∑
k=1

QT
ikSik(Ei)Qik

)
P

with a permutation matrix P . Again, see Kočvara et al. [9] for more technical details and a more precise
definition of the matrices Qik and Sik(Ei).

Whereas displacement and stress constraints can be added to the nonlinear programs (NSDP), (NCDA),
or (NDDA) directly, vibration and buckling constraints lead to nonlinear nonconvex and semidefinite matrix
restrictions. At the moment, some alternative methods to take them into account, are under consideration.
A possible approach is to approximate these matrices in a suitable way to get convex matrix constraints.
By successive solution of approximated convex nonlinear programs, a solution of the non-convex problem is
obtained.

References

[1] Beck A., Ben-Tal A., Tetruashvili L. Large scale methods for convex FMO-type problems. Technical
report, MINERVA Optimization Center, Faculty of Industrial Engineering, Technion, Israel, 2007.

10
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