b
i)

V€

\_-'-h
~ PLATO-N
SIXTH FRAMEWORK PROGRAMME

FP—6 STREP 30717 PLATO-N (Aeronautics and Space)
PLATO-N

A PLAtform for Topology Optimisation incorporating Novel, Large-Scale,
Free-Material Optimisation and Mixed Integer Programming Methods

Sequential Convex Programming Methods for

Free Material Optimization
PLATO-N Public Report PU-R-4-2007

July 23, 2007

Authors:
Sonja Ertel
Klaus Schittkowski

Christian Zillober

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination level: Public



Sequential Convex Programming Methods

for Free Material Optimization

Sonja Ertel
Department of Computer Science, University of Bayreuth, D-95440 Bayreuth
sonja.ertel@uni-bayreuth.de
Klaus Schittkowski
Department of Computer Science, University of Bayreuth, D-95440 Bayreuth
klaus.schittkowski@uni-bayreuth.de
Christian Zillober

Department of Mathematics, University of Wiirzburg, D-97074 Wiirzburg
christian.zillober@uni-wuerzburg.de

Date:

July 23, 2007

Abstract:

We consider a numerical method for constrained nonlinear programming, that is widely used in mechanical
engineering and that is known under the name SCP for sequential convex programming. The algorithm
consists of solving a sequence of convex and separable subproblems, where an augmented Lagrangian merit
function is used for guaranteeing convergence. Originally, SCP methods were developed in structural me-
chanical optimization, and are particularly applied to solve topology optimization problems. A new challenge
for SCP methods is the solution of free material optimization (FMO) problems which contain additional semi-
definite variables and even nonlinear semi-definite matrix constraints. A few formulations are investigated
in more details and possible solution approaches are outlined.
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1 Introduction

Sequential convex programming (SCP) algorithms are based on the observation that in some special cases,
typical structural constraints become linear in the inverse variables. Although this special situation is rarely
observed in practice, a suitable substitution by inverse variables depending on the sign of the corresponding
partial derivatives and subsequent linearization is expected to linearize model functions somehow.

More general convex approximations are introduced by Svanberg [20] known under the name method
of moving asymptotes (MMA). The goal is always to construct convex and separable subproblems, for
which efficient solvers are available. Thus, we denote this class of methods by SCP, an abbreviation for
sequential convex programming. The resulting algorithm is very efficient for solving mechanical engineering
problems, if a proper starting point is available and if only a crude approximation of the optimal solution
needs to be computed because of certain side conditions, for example calculation time or round-off errors
in objective function and constraints. Some comparative numerical tests of SCP, SQP, and some other
nonlinear programming codes are available for test problems from mechanical structural optimization, see
Schittkowski, Zillober, and Zotemantel [17].

The computer code under investigation is the SCP routine SCPIP of Zillober [23, 21], an implementation
of the method of moving asymptotes (MMA). Strictly convex and fully separable subproblems are solved
by an interior point method combined with an active set strategy. Sparsity of the Jacobian matrix of the
constraints is taken into account.

Topology optimization is one of the main areas, where SCP methods are applied. The idea is to distribute
mass within a given volume, so that the global compliance of the structure is minimized. Since the number
of the finite elements is often very big depending on the desired discretization accuracy, large nonlinear
programs must be solved iteratively. The number of variables can be in the order of 10° to 10% or even more,
see Zillober, Schittkowski and Moritzen [25]. In addition, more realistic structures require constraints for
each element leading to a large number of nonlinear inequality constraints of the same order of magnitude.

In the subsequent section, we briefly outline SCP methods and especially the structure of the convex
subproblems. Free material optimization is discussed in Section 3 where we show some proposals to handle
semi-definite and diagonally dominant matrix variables depending on material properties. In Section 4
further nonlinear constraints for displacements, stresses, and global stability like buckling or vibration are
introduced. The relationship to the PLATO-N software architecture and alternative approaches provided by
the Technion is shown.

2 Sequential Convex Programming (SCP) Methods

We consider nonlinear optimization problems of the kind

min f(x)
s.t. ¢j(z) =0, j=1,...,Mmeq
(P) ci(z) <0, J=Meq+1,...,mc
rz eR”
where f(z) and ¢;(z), j =1,...,m,, are twice continuously differentiable scalar functions.

Our goal is to create a sequence of convex and separable subproblems which are easy to solve due to their
special structure, as illustrated in Figure 1. The corresponding solutions converge to the optimal solution of
the original problem under some quite general assumptions.
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Figure 1: Procedure of MMA-Algorithm

One of the most important features of SCP methods based on the MMA technique is the introduction of
two flexible asymptotes for each coefficient i of the optimization variable z* in the k-th iteration, i =1, ...,
n. These asymptotes, an upper one UF and a lower one L¥, reduce the feasible region and allow to control the
curvature of a merit function, e.g., an augmented Lagrangian function, see Zillober [24]. Nonlinear equality
constraints are linearized as in case of SQP methods. The strictly convex and separable subproblems possess
diagonal Hessian matrices of the Lagrangian function which are explicitly known, and are solved by an
interior point method taking sparsity patterns of the Jacobian matrix into account.
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with I UR) = () c]( ) >0}, 1Y% = Cj( ) < 0} and the asymptotes are 0 < L
With these defimtlons we obtain the subproblem

min f*(x)
s.t. ¢i(z) =0, J=1...,meq
(Pslilb) cf(x) <0, J = Meq+1,...,m
o <w<al,
xeR”

where 2/ and 2/ are suitable lower and upper bounds for z taking the asymptotes into account. This
approximation of the nonlinear programming problem (P) is strictly convex and of first order, i.e.,

fk(xk) :f(xk)a C?(xk) :Cj(xk)a
J=1
Vb)) = V ("), Vi (a*) = Vej (zh),
me. The resulting subproblem (Pslflb) is solved by an interior point method, where the structure of the

diagonal Hessian matrices is exploited. The asymptotes are adapted in a special way, see Zillober [24] for
more details and Figure 2 for an illustration.

u®

Figure 2: Method of Moving Asymptotes, Ertel [5].

Sequential convex programming methods are extensions of the method of moving asymptotes (MMA).
They contain an additional merit function and a corresponding line-search algorithm. A possible merit
function of (P) is the augmented Lagrangian function ®, for a given set of penalty parameters p; > 0, j =1,
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see also Schittkowski [16] for its usage as part of an SQP method. The merit function combines the objective
function and constraints controlled by penalty parameters p;, which must be carefully adapted by the
algorithm, and possesses the following basic properties:

1. A point (z*,y*) is a stationary point for ®,, if and only if (z*,y*) is stationary for (P).

2. Under certain conditions there exists p € R™, 0 < p, such that z* is a local minimizer for ®,(x,y*) for
all p > p.

The SCP algorithm can be summarized as follows:

Step 0: Choose starting value 2° and let k := 0.

Step 1: Determine L¥ and UF and compute f*(z¥), c;?(xk), i=1,..., me.
Step 2: Solve (P, ). Let (z*,v*) a KKT-point, where v* is the multiplier vector.
Step 3: If z¢ = 2%, then stop. (2*,y*)T is considered as a solution.

Step 4: Let p* := (2% — ok oF — ¢F).
Step 5: Perform line search with respect to ®(z*, y*) along direction p* to get
a steplength oy with a sufficient reduction of the merit function.

Step 6: Let (z*+1,y*+1) = (2%, y*) + oxp”® and set k ==k + 1.
Step 7: Compute Vf(z*), Ve;(z*), j =1, ..., m., and goto Step 1.

3 Free Material Optimization (FMO)
3.1 The General FMO Problem

Free material optimization (FMO) is an extension of topology optimization, where we try to find the optimal
material distribution in form of elasticity tensors, see Bendsge and Sigmund [4] and Zowe, Koc¢vara, and
Bendsge [26] for a more extensive description. FMO tries to find the best mechanical structure with respect
to one or more given loads in the sense of minimal weight, maximal stiffness, or any other criterion. The
material itself, as well as its distribution in the available space, can be varied.

A large number of different formulations of FMO problems is found in Koévara et al. [9]. Depending on
material properties, the number of load cases, the desired design criterion and the imposed constraints, there
are nonlinear nonconvex semidefinite programs, nonlinear convex semidefinite programs, linear semidefinite
programs, or nonconvex quadratic semidefinite programs. In this report, we only describe nonlinear, non-
convex FMO problems. In the other situations mentioned, alternative algorithms are available based on
different mathematical methods.

As shown by Koc¢vara and Stingl [10], the general FMO problem can be formulated by a nonlinear,
nonconvex semidefinite program (NSDP), where L load cases are taken into account. Design variables are
matrices F; that represent material properties, i.e., the elasticity tensors, which are symmetric and positive
semidefinite for ¢ = 1, ..., m, m number of elements of the discretized mechanical structure,



m

min 21 Trace(E;)
st. E; =0, i=1,...,m
(NSDP) p < Trace(E;) <7, i=1,....,m,
STE(B) T <, I=1,....L
E = (FEy,...,E,) € Rrdxd
where
m m Mg
K(E)=> Ki{(E)=> > BlEB;
i=1 i=1 j=1
is the global stiffness matrix and where E = (E1,..., Ey,) denotes the set of all elasticity matrices. In the

two dimensional space, each E; is a 3x3 matrix, while in the three dimensional space we get 6x6 matrices,
see Zowe, Koc¢vara, and Bendsge [26], i.e.,

Eiin Ein122 V2Fi112
E; = Ei1122 Ei220  V2FEi2012
V2Ei112 V2Ei212  2Ei210

or

Ei1111 Ei1122 Eiiss  V2Ea12 V2Ea1s V2B

Ei1122 Ei2222 Einos3  V2Ei012 V2FEiz13  V2E203

Ei1133 Ei2233 Eissss  V2Ei3s312 V2Eisz13  V2E;s323
V2Ei1112 V2Ei212 V2Ei3312 2212 2E;1213 2E;1223
V2Eii113 V2Ei213 V2Ei313 2Eans 2Fisis 2F;1323
V2Ei125 V2Ei203 V2Eis303  2Fii203  2Fi1s03 2F;2323

E; =

The indices follow the usual tensor notation.
To analyze the two systems in more detail, we assume that Hooke’s law is valid, i.e., that stresses are
linear functions of the strains. The constitutive equation in tensor notation is

0ij = Eijr er(u)
~~ S~~~ ~—~—

stress elasticity tensor strain

see Zowe, Kocvara, and Bendsge [26], where i, 7, k,l € {1,2} in the 2-dimensional and i, j, k,l € {1,2,3} in
the 3-dimensional case. Using the Einstein summation convention, we have

3 3
0ij = Eijrien = E E Eijrier

k=11=1

For 011, for example, we obtain after exchanging 7 by j, k by [ and ij by kl

3 3
o = E11kl€kz:§ E Eririen

h=11=1
= Finen + Ergee + Eiiisers + Erioi€a1 + Erig2€zs + Eii23€23 + Fri131€31
+E132€32 + E1133€33
= FEnunen +2EB112€12 + 2E1113€13 + Eri22€22 + 2F1123€23 + E1133€33



Analogously, we get similar expressions for o2, ..., 032. Furthermore, we know that o192 = 091, 023 = 032
and 013 = 031, and get the stress and strain tensors

011 012 013 €11 €12 €13
Oi5 = 021 022 023 €ij = €21 €22 €23
013 023 033 €13 €23 €33

In vector notation, we obtain

o11 Ei111 Fiiz2 Euss 2E1112 2E1113 2E1123 €11
022 Ei1122  FEa222 FEaozz 2FE2212 2FE2013  2E2923 €22
033 _ Ei133  FEazz FEszzz 2E3312 2E3313 2E3323 €33
o12 N Er112 Eao12 Ezziz 2E1212 2E1213 2E1923 €12
013 E1113 Eao213 Ezziz 2E1213 2E1313 2E1323 €13
023 E1123 FE2223 E3323 2FE1223 2FE1323 2FE3323 €23

To get a symmetric matrix, E;jxi, 012,013,023, €12, €13 and ez3 are multiplied by \/5, leading to

011 Ei1111 Ei1122 E;1133 V2E;1112 V2Ej1113 V2Ei1123 €11

022 E;i1122 E;2222 E;2233 V2E;2212  V2E;2213  V2E;2223 €22

033 _ Ei1133 Ei2233 Ei3333 V2Ei3312  V2E;3313 V2E;3323 €33
\/50'12 V2E;1112 V2E;2212  V2E;3312 2Ej1212 2E;1213 2E;1223 \/5612
\/50'13 V2E;1113  V2E;2213  V2E;3313  2E;1213 2F;1313 2F;1323 \/5513
\/50'23 V2E;1123 V2FEj2023 V2E;3323 2E;1223 2E;1323 2E;2323 \/5623

In the framework of PLATO-N, (NSDP) is to be solved by a new variant of the SCP algorithm handling
semi-definite matrix variables and matrix constraints. The code SCPIP of Zillober [24] serves as our initial
implementation and is to be gradually extended. The approaches considered for solving the primal program
(NSDP), are illustrated in Figure 3 together with some others for solving the dual convex and linear semi-
definite programs. These are:

1. SCPIP for non-convex problems with diagonally dominant matrix variables,
2. SCPIP for non-convex problems with positive semi-definite matrix variables,

Convex approximation of semi-definite matrix constraint,

> W

CONERML (Technion) for convex problems with semi-definite matrix variables,

5. Linear approximation of semi-definite matrix constraint.
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Figure 3: Approaches to solve FMO

In the subsequent sections, we consider only the 2-dimensional space to simplify the notation.

3.2 Cholesky Factorization of Positive Semi-Definite Matrix Variables

The idea of this approach is to generate an optimization problem without semi-definite matrix variables,
which is directly solved by the code SCPIP. The constraints F; = 0,7 =1, ..., m, are omitted by optimizing
directly the Cholesky factors of E;, i.e., we assume that E; = D;D! and consider the lower triangular

matrices D; = 0, ¢ =1, ..., m, as optimization variables. It is important to note that linear constraints in
F; become nonlinear in the new variables D;.
Consider
di 0 0
Di= | dio diz 0
dig  dis  dig

Then we get E; by

d3 di1d;o di1dia
E; = | diodn d% + d% diadis + dizd;s
dindis  diodia + disdis  d3y + d2 + d

The FMO problem (NSDP) is now replaced by a nonlinear Cholesky decomposition approach (NCDA)



oom 6 o
min Z Z di;
i=1j5=1
6 '
(NCDA) &tgéiy%gﬁ, i=1,....,m
i=
FTED) <, l=1,...,L
di; € R, i=1,....m,j3=1,...,6
where
m m Mig
K(D)= YK (D) = 33 B0,
i=1 i=1 j=1
and D = (Dx,...,Dy,,) with lower triangular matrices D;. n;, is the number of Gaussian integration points.

See Kotvara et al. [9] for a more detailed definition of the block matrices B;;. The general assumption that
elasticity tensors have to be positive semi-definite, permits anisotropic materials.

3.3 Diagonal Dominant Matrix Variables

For isotropic materials, elasticity tensors E; have a more restrictive structure, see Pedersen [15],

Eiainn Eiiee 0
Ei = | Eaize Eiain 0
0 0 Eiii1 — Eiioe

These matrices must be positive semi-definite as before, but in addition diagonally dominant. Due to the
special structure of F;, both assumptions lead to the inequality constraints

Eiin > 0
Eiiiin > |Eiiee]

To get twice differentiable constraints, the absolute values are replaced by two linear inequality constraints,

Eqimn > 0
Eininn > —FEie
Eiain1r =2 FEioe

Thus, we get an alternative, simpler optimization problems called the nonlinear diagonally dominant
approach,

m
min > 3E;1111 — Eit122
i=1

s.t. p <3En111 — Einz2 <p, i=1,...,m
TKE) U <, l=1,...,L

(NDDA) |

Eiin 20, i=1,...,m

Ei111 + Ei1122 2 0, i=1,....,m

Ei1111 — Ei1122 > 0, i=1,...,m

Eii111, B2 € R i=1,...,m



where

m m  Mig
K(E)=> K{(E)=> Y BlEB;
i=1 i=1 j=1
and E = (En,. .., E,,) with above matrices E;. n;4 is the number of Gaussian integration points. Again, see

Kotvara et al. [9] for a more detailed definition of the block matrices B;;. The resulting problem possesses
a large number of sparse linear constraints, and is to be solved by SCPIP.

4 Displacement, Stress, and Stability Constraints

By additional constraints, bounds for displacements, stresses, vibrations and buckling are defined depending
on the underlying FMO formulation.
Linear constraints on displacements can be imposed in selected areas in terms of

CK(E) 'f' <d,

l=1,..., L. The matrix C serves to select nodes or combination of nodes for which displacements are to
be restricted.

Stress constraints are highly important from the engineering point of view. However, exact formulation is
still difficult. Stress constraints sometimes lead to optimization problems that do not satisfy the constraint
qualification, see Ko¢vara and Stingl [10]. Local bounds can be declared in form of Ko¢vara et al. [9],

Nig

D IEBwK(E) " [ < 500
k=1

i=1,...m,l=1,..., L.
Vibrations lead to linear stability constraints of the form K(E) + AM (E) = 0 with the mass matrix

M(E) = zm: Trace(E;)M;

and M; = PiMiPiT. The matrices M; are positive semidefinite and have the same nonzero structure as the
element stiffness matrices K;, see Kocvara et al. [9] for details.

The stability constraints for avoiding buckling require K (E)+ G(E;) = 0 for all load cases and elements,
l=1,..,L,i=1,...,m. G(E;) is the geometry stiffness matrix, see Ko¢vara and Stingl [13], defined by

G(E;) := PT (Zi@ﬁ&k(ﬂ‘)@ik) P

i=1 k=1

with a permutation matrix P. Again, see Koc¢vara et al. [9] for more technical details and a more precise
definition of the matrices Q;x and Six(E;).

Whereas displacement and stress constraints can be added to the nonlinear programs (NSDP), (NCDA),
or (NDDA) directly, vibration and buckling constraints lead to nonlinear nonconvex and semidefinite matrix
restrictions. At the moment, some alternative methods to take them into account, are under consideration.
A possible approach is to approximate these matrices in a suitable way to get convex matrix constraints.
By successive solution of approximated convex nonlinear programs, a solution of the non-convex problem is
obtained.
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