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Abstract: We consider free material optimization (FMO) problems, which are defined in form
of semidefinite programs. The objective is to compute the stiffest structure subject to given
loads. Constraints are bounds for compliances, displacements or stresses. Optimization variables
are the entries of element material matrices in two or three dimensions. FMO problems are
solved by a sequential convex programming algorithm, which is frequently applied in mechanical
structural design optimization. The idea is to construct convex and separable subproblems, which
are either solved by an interior point method or by an external solver, which is able to treat
positive semidefinite variables. In the case of isotropic materials, additional linear constraints
guarantee positive definite material matrices. For anisotropic materials, we propose to optimize
over Cholesky factors of the elasticity matrices. Some preliminary numerical results are presented
for these two situations. Finally we discuss the integration of two semidefinite subproblem solvers
called PENNON and CONERML and the possibility to add stress and displacement constraints.
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1 Introduction

We consider a constrained optimization method that is widely used in mechanical engineering
and that is known under the name sequential convex programming (SCP). The algorithm com-
putes an optimal solution by solving a sequence of convex and separable subproblems, where an
augmented Lagrangian merit function is used to guarantee convergence. Originally SCP methods
were developed in structural mechanical optimization and are particularly applied to solve topology
optimization problems.

The algorithm is based on the observation that in some special cases typical structural con-
straints become linear in the inverse variables. Although this special situation is rarely observed
in practice, a suitable substitution by inverse variables depending on the sign of the corresponding
partial derivatives and subsequent linearization is expected to linearize model functions somehow.

The approach goes back to the method of moving asymptotes (MMA) introduced by Svan-
berg [29]. The algorithm does not apply a line search but is very efficient for solving mechanical
engineering problems, if a proper starting point is available. Some comparative numerical tests of
SCP, SQP and some other nonlinear programming codes are available for test problems from me-
chanical structural optimization, see Schittkowski, Zillober, and Zotemantel [27] and Schittkowski,
Zillober, Moritzen [26].

The computer code under investigation is the SCP routine SCPIP of Zillober [30, 33, 34, 31].
Strictly convex and fully separable subproblems are solved by an interior point method combined
with an active set strategy. General sparsity of the Jacobian matrix of the constraints is taken into
account.

Topology optimization is one of the main domains of applications where SCP methods are
frequently used. The idea is to distribute mass within a given volume, so that the global compliance
of the structure is minimized. Since the number of the finite elements is often very large depending
on the desired discretization accuracy, nonlinear programs must be solved iteratively with up to
105 to 106 or even more variables. In addition, more realistic structures require constraints for
each single element leading to a large number of nonlinear inequality constraints of the same order
of magnitude.

Free material optimization (FMO) is introduced in a couple of papers by Bendsøe [4], Bendsøe
and Sigmund [5] and Zowe, Kočvara, and Bendsøe [35]. FMO tries to find the best mechanical
structure with respect to one or more given loads in the sense that a design criterion, e.g., minimal
weight or maximal stiffness, is obtained. The material properties as well as material distributions
in the available space are varied. In this context FMO belongs to topology optimization. As
shown by Kočvara and Stingl [17], the FMO problem can be formulated for a given set of loads by
a nonlinear semidefinite programming (NSDP) problem.

The standard FMO formulation is to minimize the maximum compliance fT
j K−1(E)fj for a

load fj, j = 1, . . ., l, where l is the number of load cases and K(E) the global stiffness matrix.
A more detailed description is found in Hörnlein, Kočvara and Werner [11] and Kočvara and
Zowe [20]. As a measure of the material stiffness in the coordinate directions, we use the traces
of the material matrices Ei, which are the design or optimization variables of our approach. The
elasticity matrices Ei, i = 1, . . . , m have to be physically reasonable, i.e., symmetric and positive
semidefinite. Thus there are additional volume constrains, see Ben-Tal, Kočvara, Nemirovski, and
Zowe [2] and further constraints to prevent singularities.

The FMO problem leads to a special formulation of the convex and separable subproblem of
the SCP method. Besides of certain ways to enforce the positive semi-definiteness (PSD) of the
anisotropic material matrices, e.g., by optimizing Cholesky factors, a new alternative is to handle
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PSD constraints directly by applying special solvers. In our situation the PSD code PENNON
of Kočvara and Stingl [14] and the convex optimization solver CONERML of Beck, Ben-Tal, and
Tetruashvili [1] are applied.

The FMO problem is extended by displacement and stress constraints. Displacement con-
straints are motivated by the technological background and provide a means to keep the deforma-
tion of the structure within certain boundaries. They are considered at special nodes unlike the
compliance, and act as additional constraints. Moreover, we analyze the so-called von Mises stress
constraints. Stresses acting in different directions are mapped into one equivalent stress vector
which is then tested for stability.

In the subsequent section, we present the SCP method in more detail since it provides the basis
for all numerical investigations. The convex approximations are presented which generate convex
and separable subproblems.

An interior point method for solving these problems is presented in Section 3, which is imple-
mented as the standard solver in the corresponding code SCPIP of Zillober [34].

The standard formulation of FMO is outlined in Section 4. Derivatives of compliance constraints
are given which are needed to formulate the convex and separable subproblem discussed in Section 3
in general terms. It is shown how the PSD conditions are passed to the subproblem.

Some solution methods for solving the standard FMO problem are introduced in Section 5. In
case of isotropic materials, the PSD constraints are easily replaced by a set of linear constraints.
For the general anisotropic case, a Cholesky decomposition of the material matrices allows a black
box application of the SCP code SCPIP. However, there are disadvantages and it might be more
reasonable to apply directly either a PSD solver like PENNON or a convex programming solver
like CONERML to solve the PSD subproblems. A particular advantage is that second derivatives
are available and that the Hessian of the Lagrangian is diagonal.

Possible extensions towards displacement and stress constraints are discussed in Section 6. It
is shown how these constraints are included in the available FMO framework and how derivatives
can be computed.

The software architecture is briefly outlined in Section 7, more details are presented in an
appendix. The section contains also some numerical results obtained for the standard FMO for-
mulation and two simple academic test cases. So far, two-dimensional FMO problems with up to
30,000 variables can be solved.

2 Sequential Convex Programming

We consider nonlinear optimization problems of the kind

(P0)







min
x∈IRn

f(x)

s.t. c(x) ≤ 0
(1)

where the scalar objective function f(x) and the scalar constraint functions cj(x), j = 1, . . . , m, are

twice continuously differentiable, c(x) := (c1(x), . . . , cm(x))
T
. Without loss of generality we omit

equality constraints to facilitate the notation. We do not need them for free material optimization
(FMO) discussed subsequently.

To understand the discussions and notations of the subsequent sections, we introduce the
Lagrangian function

L(x, y) := f(x) + yT c(x) (2)
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where x ∈ IRn is the primal variable and y = (y1, . . . , ym)T ∈ IRm the dual variable, also called the
vector of the Lagrange multipliers. Under some additional assumptions, necessary and sufficient
optimality conditions, the so-called KKT conditions, can be derived. A local stationary point
x⋆ ∈ IRn is characterized by finding a corresponding multiplier vector y⋆ ∈ IRm satisfying

y⋆ ≥ 0

c(x⋆) ≤ 0

▽xL(x⋆, y⋆) = 0

c(x⋆)T y⋆ = 0

(3)

For modeling more realistic situations we introduce upper and lower bounds for the variables

x ≤ x ≤ x .

Moreover, linear constraints defined by a matrix A ∈ IRml×n and a vector b ∈ IRml are handled
separately and lead to the following extended nonlinear program which is used subsequently,

(P)







min
x∈IRn

f(x)

s.t. c(x) ≤ 0

Ax ≤ b

x ≤ x ≤ x

(4)

First, we consider the so-called method of moving asymptotes (MMA) for solving the nonlinear
program (P), see Fleury [8] and Svanberg [29]. Although the algorithm is not stabilized, e.g., by a
line search, and convergence of the algorithm cannot be proved in a rigorous mathematical sense,
the algorithm is quite successful in practice. The basic idea is to generate a sequence of convex and
separable subproblems which can be solved by any available algorithm taking the special structure
into account. The procedure is illustrated in Figure 1.

Solution Process

Approximation

Interior point

method

Problem

MMA Subproblem

Figure 1: Procedure of MMA-Algorithm
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The idea behind MMA is the segmentation of the n-dimensional problem space into n one-
dimensional spaces. One of the most important features is the introduction of two flexible asymp-
totes for each optimization variable xi which restrains the feasible region and prevents the algorithm
performing too long steps.

Objective function and nonlinear inequality constraints are linearized with respect to reciprocal

bounded variables (U
(k)
i − xi)

−1 and (xi − L
(k)
i )−1. The resulting approximation of the objective

function at an iterate k is

f (k) (x) := f
(
x(k)

)

+
∑

I
(k)

+

[

∂f
(
x(k)

)

∂xi

(

U
(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)]

−
∑

I
(k)
−

[

∂f
(
x(k)

)

∂xi

(

x
(k)
i − L

(k)
i

)2
(

1

xi − L
(k)
i

− 1

x
(k)
i − L

(k)
i

)]

+
∑

I
(k)
+

τ
(k)
i

(

xi − x
(k)
i

)2

U
(k)
i − xi

+
∑

I
(k)
−

τ
(k)
i

(

xi − x
(k)
i

)2

xi − L
(k)
i

(5)

with I
(k)
+ :=

{

i

∣
∣
∣
∣
∣

∂f
(
x(k)

)

∂xi

≥ 0

}

, I
(k)
− :=

{

i

∣
∣
∣
∣
∣

∂f
(
x(k)

)

∂xi

< 0

}

, L
(k)
i < xi < U

(k)
i .

A positive parameter τ is introduced to guarantee strict convexity, see Zillober [32]. The lower

and upper bounds L
(k)
i and U

(k)
i serve as lower and upper asymptotes which cannot be exceeded

by the algorithm.
The nonlinear inequality constraints cj (x) for j = 1, . . ., m are approximated by

c
(k)
j (x) := cj

(
x(k)

)

+
∑

I
(j,k)

+

[

∂cj

(
x(k)

)

∂xi

(

U
(k)
i − x

(k)
i

)2
(

1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)]

−
∑

I
(j,k)
−

[

∂cj

(
x(k)

)

∂xi

(

x
(k)
i − L

(k)
i

)2
(

1

xi − L
(k)
i

− 1

x
(k)
i − L

(k)
i

)] (6)

with I
(j,k)
+ :=

{

i

∣
∣
∣
∣
∣

∂cj

(
x(k)

)

∂xi

≥ 0

}

, I
(j,k)
− :=

{

i

∣
∣
∣
∣
∣

∂cj

(
x(k)

)

∂xi

< 0

}

and L
(k)
i < xi < U

(k)
i .

With these definitions we obtain the subproblem

(

P
(k)

sub

)







min
x∈IRn

f (k)(x)

s.t. c(k)(x) ≤ 0

Ax ≤ b

x(k) ≤ x ≤ x(k)

(7)
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where x
(k)
i := max

{

xi, x
(k)
i − ω

(

x
(k)
i − L

(k)
i

)}

and x
(k)
i := min

{

xi, x
(k)
i + ω

(

U
(k)
i − x

(k)
i

)}

for

i = 1, . . ., n and a suitable constant ω with 0 < ω < 1.

The approximation of the nonlinear program (P) is strictly convex and of first order, i.e.,

f (k)
(
x(k)

)
= f

(
x(k)

)
c(k)

(
x(k)

)
= c

(
x(k)

)

∇f (k)
(
x(k)

)
= ∇f

(
x(k)

)
∇c(k)

(
x(k)

)
= ∇c

(
x(k)

)

f (k) strictly convex c(k) convex

f (k) separable c(k) separable

Due to the strict convexity of the subproblem
(

P
(k)

sub

)

it exhibits a unique solution. The first and

second derivatives are available in analytical form and the Hessian of the corresponding Lagrangian
function is diagonal. The asymptotes have to be adapted in a special way, see Zillober [34] for
more details and Figure 2 for an illustration.

Figure 2: Method of Moving Asymptotes, Ertel [7].

To guarantee convergence we consider an extension of the MMA method, the sequential convex
programming (SCP) method. To simplify the subsequent notation, we neglect the linear constraints
Ax ≤ b in (P), i.e., ml = 0, and proceed from

(PS)







min
x∈IRn

f(x)

s.t. c(x) ≤ 0

x ≤ x ≤ x

(8)
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The corresponding convex and separable subproblem now becomes

(

PS
(k)

sub

)







min
x∈IRn

f (k)(x)

s.t. c(k)(x) ≤ 0

x(k) ≤ x ≤ x(k)

(9)

An additional merit function is introduced and a line search is performed along the descent direc-

tion, obtained from subproblem
(

PS
(k)

sub

)

. In this case the augmented Lagrangian merit function

is chosen, which is defined by

Φρ (x, y) = f(x) +

m∑

j=1







yjcj(x) +
ρj

2
c2
j(x), if − yj

ρj

≤ cj(x)

−
y2

j

2ρj

, otherwise.
(10)

for a given set of penalty parameters ρj > 0, j = 1, . . ., m.
The merit function combines the objective function and constraints in a suitable way controlled

by penalty parameters ρj , which must be carefully adapted during the solution process to guarantee
descent search directions and global convergence of the algorithm. The same merit function is used
by Schittkowski [25] in the frame of a sequential quadratic programming (SQP) method.

The SCP algorithm is summarized as follows:

Algorithm 1 Sequential Convex Programming
Step 0: Choose starting value x(0), select suitable parameter values to control the algorithm

and let k := 0.

Step 1: Determine L
(k)
i , U

(k)
i for i = 1, . . ., n, and compute f (k) (x) , c(k) (x).

Step 2: Solve
(

P
(k)

sub

)

. Let z(k) be the optimal solution and v(k) be the multiplier.

Step 3: If z(k) = x(k), then stop. x(k) and y(k) is a KKT point.

Step 4: Let p(k) :=

(
z(k) − x(k)

v(k) − y(k)

)

be the search direction.

Step 5: Perform a line search with respect to Φ
(
x(k), y(k)

)
along the direction p(k) to get a step

length σ(k) and a sufficient reduction of the merit function.

Step 6: Let

(
x(k+1)

y(k+1)

)

=

(
x(k)

y(k)

)

+σ(k)p(k) be the new iterate, replace k by k+1 and goto Step 1.

The asymptotes restrict the feasible region and allow to control the curvature of a merit func-
tion, e.g., the augmented Lagrangian function (10), see Zillober [31]. Under some mild assumptions
a convergence proof can be given. For further details see Zillober [32].

3 The Convex and Separable Subproblem

In principle, the strictly convex and separable subproblem
(

PS
(k)

sub

)

can be solved by any available

algorithm. Besides of the solution the applied code has to provide the optimal multipliers. To
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simplify the notation, we omit again linear inequality constraints. They are either handled in the
same way as general nonlinear constraints or are passed directly to the subproblem solver.

The code SCPIP of Zillober [34] calls a standard routine based on an interior point method
(IPM), see Zillober [31]. Since predictor-corrector interior point methods are very efficient in linear
programming, see e.g., Lustig, Marsten, and Shanno [22] and Mehrota [23], the same basic idea is
modified to take the special structure into account.

A particular advantage is that first and second order partial derivatives are analytically given
and that the Hessian matrix of the Lagrangian is diagonal due to separability. For the matter of
completeness, these derivatives are listed below for the objective function f (k)(x),

∂f (k)(x)

∂xi

=
∑

j∈I
(k)
+

∂f(x(k))

∂xj

(U
(k)
j − x

(k)
j )2

(U
(k)
j − xj)2

+ τ
(k)
j

(

xj − x
(k)
j

)(

2U
(k)
j − xj − x

(k)
j

)

(

U
(k)
j − xj

)2

︸ ︷︷ ︸

only objective

+
∑

j∈I
(k)
−

∂f(x(k))

∂xj

(x
(k)
j − L

(k)
j )2

(xj − L
(k)
j )2

+ τ
(k)
j

(

xj − x
(k)
j

)(

xj − 2L
(k)
j + x

(k)
j

)

(

xj − L
(k)
j

)2

︸ ︷︷ ︸

only objective

(11)

∂2f (k)(x)

∂x2
i

=
∑

j∈I
(k)

+

∂f(x(k))

∂xj

2(U
(k)
j − x

(k)
j )2

(U
(k)
j − xj)3

+ 2τ
(k)
j






(

Uk
j − x

(k)
j

)2

(

U
(k)
j − xj

)3






︸ ︷︷ ︸

only objective

−
∑

j∈I
(k)
−

∂f(x(k))

∂xj

2(x
(k)
j − L

(k)
j )2

(xj − L
(k)
j )3

+ 2τ
(k)
j






(

x
(k)
j − L

(k)
j

)2

(

xj − L
(k)
j

)3 )






︸ ︷︷ ︸

only objective

(12)

with I
(k)
+ :=

{

j

∣
∣
∣
∣
∣

∂f
(
x(k)

)

∂xj

≥ 0

}

, I
(k)
− :=

{

j

∣
∣
∣
∣
∣

∂f
(
x(k)

)

∂xj

< 0

}

, L
(k)
j < xj < U

(k)
j and a

positive parameter τ .
Derivatives of the inequality constraints cj(x), j = 1, . . . , m are computed in the same way with

τ (k) = 0 and corresponding I
(j,k)
+ and I

(j,k)
+ , see (6).

The key idea of any IPM is to add nonnegative slack variables to all inequalities constraints,

(

PS
(k)

sub
− slack

)







min
x,s,t∈IRn,h,r∈IRm

f (k)(x)

s.t. c(k)(x) + h = 0

−h + r = 0

x(k) − x + s = 0

x − x(k) + t = 0

r, s, t ≥ 0

(13)
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with slack variables r = (r1, . . . , rm)T , s = (s1, . . . , sn)T , t = (t1, . . . , tn)T , and h = (h1, . . . , hm)T .
The variable r is introduced for some technical reasons, see Zillober [32]. The corresponding
Lagrange function is

L
(k)
µ (x, y, h, r, s, t, dr, ds, dt) := f (k)(x) − µ

m∑

j=1

ln rj − µ
n∑

i=1

ln si − µ
n∑

i=1

ln ti

+ yT (c(k)(x) + h)

+ dT
r (−h + r) + dT

s (x(k) − x + s) + dT
t (x − x(k) + t)

(14)

where c(k)(x) = (c
(k)
1 (x), . . . , c

(k)
m (x))T and y, dr, ds, dt are the dual variables of the corresponding

constraints. µ is a positive penalty parameter. Subsequently we denote this Lagrangian function

by L
(k)
µ (x).

¿From the KKT optimality condition for (14) we obtain

∇xL
(k)
µ (x) : ∇f (k)(x) + J (k)(x)y − ds + dt = 0

∇yL
(k)
µ (x) : c(k)(x) + h = 0

∇hL
(k)
µ (x) : y − dr = 0

∇rL
(k)
µ (x) : DrRe − µe = 0

∇sL
(k)
µ (x) : DsSe − µe = 0

∇tL
(k)
µ (x) : DtTe − µe = 0

∇dr
L

(k)
µ (x) : −h + r = 0

∇ds
L

(k)
µ (x) : x(k) − x + s = 0

∇dt
L

(k)
µ (x) : x − x(k) + t = 0

(15)

where R, S, T , Dr, Ds, and Dt are diagonal matrices with entries of the vectors r, s, t, dr, ds

and dt respectively and where J (k)(x) denotes the Jacobian matrix of the nonlinear constraint
functions c(k)(x). Thus we get the following sparse system of linear equations by which a Newton
step is defined,
















∇2
xxL(k)(x, y) J (k)(x) −I I

J (k)(x)T I

I −I

Dr R

Ds S

Dt T

−I I

−I I

I I

































∆x

∆y

∆h

∆r

∆s

∆t

∆dr

∆ds

∆dt

















= −∇L(k)
µ (x) (16)

where L(k)(x, y) = f (k)(x)+ c(k)(x)T y is the Lagrangian function of subproblem
(

PS
(k)

sub

)

, see also

(2) for a more general definition. The diagonal elements of the submatrices are all positive and
∇2

xxL(k)(x, y) is diagonal due to separability. Subsequently the main steps of the IPM are outlined.
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Algorithm 2 The IPM predictor-corrector method for solving
(

PS
(k)

sub

)

Step 0: Choose starting values x(0), h(0), r(0), s(0), t(0), d
(0)
r , d

(0)
s , d

(0)
t and let k := 0.

Step 1: Let µ(0) := max
j=1,...,m,i=1,...,n

{

r
(0)
j (d

(0)
r )j , s

(0)
i (d

(0)
s )i, t

(0)
i (d

(0)
t )i,

}

.

Step 2: Solve Newton System (16) for the predictor step.

Step 3: Add perturbation parameter to the right hand side of the system.

Step 4: Solve Newton System (16) for the corrector step using the results of the predictor step
and µ(k+1).

Step 5: Compute independent primal and dual step sizes δp and δd.

Step 6: Update iterates by

x(k+1) := x(k) + δp ∆x, y(k+1) := y(k) + δd ∆y,

h(k+1) := h(k) + δp ∆h, r(k+1) := r(k) + δp ∆r,

s(k+1) := s(k) + δp ∆s, t(k+1) := t(k) + δp ∆t,

d
(k+1)
r := d

(k)
r + δd ∆dr, d

(k+1)
s := d

(k)
s + δd ∆ds,

d
(k+1)
t := d

(k)
t + δd ∆dt

Let k := k + 1. If ‖L(k)
µ (x)‖ ≤ ǫ stop, else goto Step 2.

The predictor step is used to estimate a proper value for the parameter µ and the nonlinearity terms
for the corrector step. Thus the linear system is solved without taking µ into account, which is
part of the right hand side. The algorithm stops as soon as a stopping criterion based on the KKT

conditions for
(

PS
(k)

sub

)

is satisfied subject to a predetermined accuracy, see Zillober [34, 31, 32, 33]

for details.
The main computational work of the SCP algorithm consists of solving the linear equation

systems (16). Due to its special structure it is possible to reduce the size either to an (n +
m) × (n + m), n × n or m × m system, where m denotes the number of constraints and n the
number of variables. However, the resulting reduced system has special properties depending on
the performed reduction, see the subsequent Table 1.

dual (S2) (S3) (S4)
dimension m × m (n + m) × (n + m) m × m n × n

definite positive indefinite positive positive
sparsity dense sparse - -

Table 1: Dimension of Subproblems, Zillober [34].
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4 Free Material Optimization

The SCP algorithm is to be applied for solving free material optimization (FMO) problems, see
Bendsøe [4] and Zowe, Kočvara, and Bendsøe [35] for a deeper treatment. FMO tries to find
the best mechanical structure with respect to one or more given loads in the sense that a design
criterion, e.g., minimal weight or maximal stiffness, is obtained. The material properties as well
as material distribution in the available space is varied. In this context FMO belongs to topology
optimization.

As shown by Kočvara and Stingl [17], the FMO problem can be formulated for a given set of
loads by a convex nonlinear semidefinite programming (NSDP) problem. Other problem formula-
tions are given by Kočvara, Beck, Ben-Tal and Stingl in [13].

We proceed from m elements of an FE discretization of the underlying mechanical design
structure. The optimization variable E consists of a set of elasticity matrices Ei that represent
material properties in each finite element i, i = 1, . . ., m. These matrices must be symmetric and
positive semidefinite for physical reasons.

We denote an dm × dm matrix E by

E := diag(E1, . . . , Em) =









E1 0 . . . 0

0 E2
. . .

...
...

. . .
. . . 0

0 . . . 0 Em









(17)

where d = 3 in the two-dimensional and d = 6 in the three-dimensional case. For a two-dimensional
structure we get the material matrix

Ei =





ei1 ei2 ei3

ei2 ei4 ei5

ei3 ei5 ei6



 (18)

and for the three-dimensional we get

Ei =











ei1 ei2 ei3 ei4 ei5 ei6

ei2 ei7 ei8 ei9 ei10 ei11

ei3 ei8 ei12 ei13 ei14 ei15

ei4 ei9 ei13 ei16 ei17 ei18

ei5 ei10 ei14 ei17 ei19 ei20

ei6 ei11 ei15 ei18 ei20 ei21











(19)

for i = 1, . . ., m.
The so-called compliance function is a measure for the stiffness of a mechanical structure. The

smaller the compliance, the more robust is the structure subject to external loads fj, for a load
case j, j = 1, . . ., l. The stiffness of the structure depends on the material properties of each
element Ei, i = 1, . . . , m and is given by fT

j K−1(E)fj for j = 1, . . ., l, where

K(E) :=

m∑

i=1

nig
∑

k=1

BT
i,kEiBi,k (20)

is the global stiffness matrix, see Kočvara and Stingl [16]. The matrices Bi,k are needed to determine
the element stiffness matrices over nig Gaussian integration points. A more detailed description is
found in Kočvara and Zowe [20], and in Zowe, Kočvara, Bendsøe [35].
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The design goal is to minimize the maximum compliance over a set of l different load cases by
introducing an additional design variable α, which is to be minimized subject to

fT
j K−1(E)fj ≤ α (21)

for j = 1, . . ., l.
To ensure that the global stiffness matrix K(E) is invertible and to prevent numerical instabil-

ities, we require
Ei − ρI � 0 (22)

with i = 1, . . . , m, the identity matrix I and ρ a small positive value. For dual methods, (22) is
often replaced by

ρ′ ≤ trace(Ei). (23)

Note that (22) is more restrictive than (23).
As a measure of the material stiffness in the coordinate directions, we use the traces of the

matrices Ei, i = 1, . . . , m. Thus, the sum of all these traces must not be larger than the available
volume V , i.e.,

m∑

i=1

trace(Ei) ≤ V (24)

see Ben-Tal, Kočvara, Nemirovski, and Zowe [2]. To prevent singularities we bound the trace of
each element material matrix by a positive constant ρ,

trace(Ei) ≤ ρ (25)

for i = 1, . . ., m.
We obtain the basic formulation of the FMO problem

(FMO)







min
E,α

α

s.t.
m∑

i=1

trace(Ei) ≤ V

trace(Ei) ≤ ρ i = 1, . . . , m

fT
j K(E)−1fj ≤ α j = 1, . . . , l

Ei − ρI � 0 i = 1, . . . , m

(26)

Here the optimization variables are the artificial variable α and the entries of the elementary
material matrices Ei ∈ IRd×d, i = 1, . . ., m, where d = 3 or d = 6, see (18) and (19). E is the
diagonal matrix of E1, . . ., Em, confer also (17).

For matter of completeness, we also regard an alternative formulation of the FMO problem
resulting from replacing (22) by (23),

(FMO2)







min
E,α

α

s.t.
m∑

i=1

trace(Ei) ≤ V

ρ′ ≤ trace(Ei) ≤ ρ i = 1, . . . , m

fT
j K(E)−1fj ≤ α j = 1, . . . , l

Ei � 0 i = 1, . . . , m

(27)
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with Ei ∈ IRd×d, i = 1, . . ., m, d = 3 or d = 6, see (18) and (19), and E analogue to (FMO).
Since this approach causes numerical instabilities, we omit this formulation and consider problem
(FMO) in the sequel.

For the numerical realization, we first compute the compliance vector uj(E) for each load fj ,
j = 1, . . ., l, from

K(E)uj(E) = fj (28)

leading to compliance constraints

cj(E, α) := fT
j uj(E) − α ≤ 0, (29)

j = 1, . . ., l.
Note that (FMO) is formulated over semidefinite variables. To get first order approximations,

the computation of derivatives for the only nonlinear constraints, the compliances, is required. The
other constraints are linear and can be handled directly. We get

∂

∂ (Ei)pq

fT
j K(E)−1fj = −uj(E)T

(

∂K(E)

∂ (Ei)pq

)

uj(E)

= −uj(E)T

(
nig
∑

k=1

BT
i,k

(

∂Ei

∂ (Ei)pq

)

Bi,k

)

uj(E)

(30)

for i = 1, . . ., m, p, q = 1, . . ., d, j = 1, . . ., l and uj(E) = K(E)−1fj .
The crucial part of the SCP algorithm is the solution of the convex and separable subproblems

(

PS
(k)

sub

)

. We proceed now from an actual iterate E(k), see (17), and α(k), retain linear constraints

and get the subproblem

(

FMO
(k)

sub

)







min
E,α

f (k)(α)

s.t.
m∑

i=1

trace(Ei) ≤ V

trace(Ei) ≤ ρ i = 1, . . . , m

c
(k)
j (E, α) ≤ 0 j = 1, . . . , l

Ei − ρI � 0 i = 1, . . . , m

(
Ei

)(k)

pq
≤ (Ei)

(k)
pq ≤

(
Ei

)(k)

pq
i = 1, . . . , m; p, q = 1, . . . , d

(31)

with
(
Ei

)(k)

pq
:= (Ei)

(k)
pq − w

(

(Ei)
(k)
pq − L

(k)
ipq

)

(32)

(
Ei

)(k)

pq
:= (Ei)

(k)
pq + w

(

U
(k)
ipq − (Ei)

(k)
pq

)

(33)

where 0 < w < 1 fixed, i = 1, . . . , m, p, q = 1, . . . , d, see also
(

P
(k)

sub

)

,

f (k) (α) = α(k) +

(

U
(k)
m+1 − α(k)

)2

U
(k)
m+1 − α

−
(

U
(k)
m+1 − α(k)

)

+ τ
(k)
m+1

(
α − α(k)

)2

U
(k)
m+1 − α

(34)
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and

c
(k)
j (E, α)

= cj

(
E(k), α(k)

)

+
∑

I
(j,k)
+

(

−uj(E
(k))T ∂K(E(k))

∂ (Ei)pq

uj(E
(k))

)








(

U
(k)
ipq −

(

E
(k)
i

)

pq

)2

U
(k)
ipq − (Ei)pq

−
(

U
(k)
ipq −

(

E
(k)
i

)

pq

)








−
∑

I
(j,k)

−

(

−uj(E
(k))T ∂K(E(k))

∂ (Ei)pq

uj(E
(k))

)








((

E
(k)
i

)

pq
− L

(k)
ipq

)2

(Ei)pq − L
(k)
ipq

−
((

E
(k)
i

)

pq
− L

(k)
ipq

)








−

(

α(k) − L
(k)
m+1

)2

α − L
(k)
m+1

−
(

α(k) − L
(k)
m+1

)

(35)
for j = 1, . . ., l, p, q = 1, . . ., d and uj(E) = K(E)−1fj . Here Uipq and Lipq are the corresponding
upper and lower asymptotes of the variable (Ei)pq, m = 6m in case of two-dimensional and
m = 21m in case of three-dimensional structures, τm+1 a positive parameter, and the index sets
are defined by

I
(j,k)
+ :=

{

ipq

∣
∣
∣
∣
∣
−uj(E

(k))T ∂K(E(k))

∂ (Ei)pq

uj(E
(k)) ≥ 0

}

(36)

I
(j,k)
− :=

{

ipq

∣
∣
∣
∣
∣
−uj(E

(k))T ∂K(E(k))

∂ (Ei)pq

uj(E
(k)) < 0

}

(37)

However, the PSD conditions Ei − ρI � 0, i = 1, . . . , m violate the standard SCP methodology.
In the sequel, we will propose either variants to replace this condition by another one, which is

directly handled by the code SCPIP, or we pass
(

FMO
(k)

sub

)

as it stands to a special convex SDP

solver.

1. Diagonal dominance: In case of isotropic materials the material matrices are diagonally dom-
inant. This condition can be enforced by imposing suitable linear constraints.

2. Cholesky decomposition: In the more general case, i.e., anisotropic materials, the elementary

material matrices Ei are replaced by their Cholesky decomposition, Ei = LiL
T
i , where Li is a

lower triangular matrix, i = 1, . . ., m. Each occurrence of Ei is replaced by its decomposition
and the optimization is performed over variables Li.

3. PENNON: The code PENNON of Kočvara and Stingl [14] is able to handle general nonlinear
PSD matrix constraints of the form A(E) � 0. In our situation, we have A(E) := E−ρI. The
advantage is that more complex stability constraints can be handled directly, if the model is
extended in future.

4. CONERML: The code CONERML, see Ben-Tal and Nemirovski [3] and Beck, Ben-Tal and
Tetruashvili [1], is able to solve very large convex optimization problems over positive definite
matrices and can be applied directly to solve the convex subproblem.
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5 Solution Methods

5.1 Isotropic Materials

We first consider two-dimensional isotropic materials, which possess the same properties in all di-
rections. The numerical results serve as benchmark tests for the subsequently discussed anisotropic
materials.

The advantage of isotropic materials is that the elasticity matrices have a special structure and
that they are diagonally dominant, i.e.,

Ei =





ei1 ei2 0
ei2 ei1 0
0 0 ei1 − ei2



 (38)

and ei1 ≥ 0, ei1 ≥ |ei2|, i = 1, . . ., m, see Pedersen [24] and Horn and Johnson [9]. Note that
corresponding to (22) the matrices Ei − ρI, i = 1, . . . , m have to be positive semidefinite. These
requirements can be reformulated in terms of additional linear constraints added to our FMO
problem (FMO),

(DDA)







min
E,α

α

s.t.
m∑

i=1

trace(Ei) ≤ V

trace(Ei) ≤ ρ i = 1, . . . , m

fT
j K(E)−1fj ≤ α j = 1, . . . , l

ei1 ≥ ρ i = 1, . . . , m

ei1 − ρ ≥ −ei2 i = 1, . . . , m

ei1 − ρ ≥ ei2 i = 1, . . . , m

(39)

with trace(Ei) = 3ei1 − ei2 for i = 1, . . ., m. The resulting problem possesses a large number of
sparse linear constraints and as it is nonlinear it is solved by SCPIP using the standard interior
point method to compute the optimal solution of the subproblem.

5.2 Cholesky Decomposition

The idea of the second approach is to create an optimization problem without semidefinite con-
straints which is directly solved by the code SCPIP. The conditions Ei � 0, for i = 1, . . . , m are
satisfied if we use Cholesky factors as optimization variables, i.e., if Ei = LiL

T
i with lower trian-

gular matrices Li. It is important to note that linear constraints in Ei become nonlinear in the
new variables Li.

In the two-dimensional case we have

Li =





li1 0 0
li2 li3 0
li4 li5 li6



 (40)

and

Ei =





l2i1 li1li2 li1li4
li1li2 l2i2 + l2i3 li2li4 + li3li5
li1li4 li2li4 + li3li5 l2i4 + l2i5 + l2i6



 (41)
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In the three-dimensional case Li, i = 1, . . . , m are lower triangular matrices of the size 6 × 6 and
the product is obtained similarly. Note that the trace of Ei is the sum of all squared elements of a
Cholesky factor. As we require Ei − ρI � 0, i = 1, . . . , m, i.e., Ei ≻ 0, see (22), all diagonal entries
of Li have to be positive.

Similar to (17) we denote an dm × dm matrix L by

L := diag(L1, . . . , Lm) =









L1 0 . . . 0

0 L2
. . .

...
...

. . .
. . . 0

0 . . . 0 Lm









(42)

where d = 3 in the two-dimensional and d = 6 in the three-dimensional case. The resulting FMO
problem (CA) is then obtained as follows,

(CA)







min
L,α

α

s.t.
m∑

i=1

‖Li‖2
F ≤ V

‖Li‖2
F ≤ ρ i = 1, . . . , m

fT
j K(LLT )−1fj ≤ α j = 1, . . . , l

diag(Li) ≥ √
ρI i = 1, . . . , m

(43)

where ‖.‖F denotes the Frobenius norm. Moreover, we get from

K(LLT ) =

m∑

i=1

Ki(LLT ) =

m∑

i=1

nig
∑

k=1

BT
i,kLiL

T
i Bi,k (44)

see also (20), the derivatives of the compliance

∂

∂ (Li)pq

(
fT

j K(LLT )−1fj − α
)

= −uj(LLT )T ∂K(LLT )

∂Ei

∂Ei

∂(Li)pq

uj(LLT ) (45)

for i = 1, . . ., m, uj(LLT ) = K(LLT )−1fj and p, q = 1, . . ., d. The problem is now in standard
form and can be solved by SCPIP using the interior point method to solve the subproblem.

5.3 The SDP Solver PENNON

The next approach is to apply the semidefinite solver PENNON which is described by Kočvara
and Stingl [14]. The algorithm solves optimization problems of the form

(PENNON)







min
X∈IRN

F (X)

s.t. A(X) � 0

Gj(X) ≤ 0 j = 1, . . . , M

(46)

with differentiable functions F (X) and Gj(X), j = 1, . . ., M . A(X) is a nonlinear mapping into
the set of all symmetric MA × MA matrices.
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The algorithm penalizes the inequality constraints by a penalty-barrier function, see Kočvara
and Stingl [15] and Stingl [28]. An eigenvalue decomposition of A(X) of the form A(X) =
S(X)T Λ(X)S(X) is computed with Λ(X) = diag(λ1(X), . . . , λMA

(X))T and negative eigenvalues
are penalized. This is achieved by formulating an augmented Lagrangian function to be minimized
by PENNON.

PENNON is to be applied to the separable, convex subproblem
(

FMO
(k)

sub

)

computed by SCP.

The standard formulation proceeds from the identity A(E) = E, but PENNON allows future
extensions towards stability and related constraints.

5.4 The Convex Programming Solver CONERML

The fourth approach is to apply a convex programming solver called CONERML, which is described
in Ben-Tal and Nemirovski [3] and Beck, Ben-Tal and Tetruashvili [1]. The algorithm solves
problems of the form

(CONERML)







min
X∈X

F (X)

s.t. Hj(X) ≤ 0 j = 1, . . . , M
(47)

where X := {X |X � ǫI }, ǫ > 0, the identity matrix I and F (X), Hj(X), j = 1, . . . , M twice
continuously differentiable.

This solver is to be integrated into SCPIP to solve the convex, separable and semidefinite sub-

problem
(

FMO
(k)

sub

)

after some reformulations. The advantage of CONERML is that the program

is able to solve large convex semidefinite optimization problems, while the rate of convergence is
nearly independent on the dimension.

6 Displacement and Stress Constraints

As additional constraints, the maximum displacement in special nodes is to be restricted, see
Kočvara [12]. Moreover there are unilateral contact conditions, see Kočvara, Zibulevsky, and
Zowe [19], describing an obstacle near the design space which cannot be passed by the mate-
rial. Displacement constraints prevent the material to exceed an imaginary border. This limit is
due to technical and mechanical reasons described for special nodes and special directions. The
displacement constraints can be formulated by

CK(E)−1fj ≤ δ (48)

for j = 1, . . ., l, where C is a matrix with entries at the bounded nodes in the critical direction and
zero otherwise. The gap between the contact surface and the imaginary boarder is described by δ
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and we obtain the subsequent FMO problem, see (FMO), extended by displacement constraints,

(FMO-D)







min
E,α

α

s.t.
m∑

i=1

trace(Ei) ≤ V

trace(Ei) ≤ ρ i = 1, . . . , m

fT
j K(E)−1fj ≤ α j = 1, . . . , l

CK(E)−1fj ≤ δ j = 1, . . . , l

Ei − ρI � 0 i = 1, . . . , m

(49)

Displacement constraints are handled in the same way as the compliance constraints. We
consider now the k-th displacement constraint gk(E) formulated for a load case jk and the k-th
row ck of C,

gk(E) := cT
k K(E)−1fjk

− δ (50)

We obtain the partial derivatives subject to an entry of an elasticity matrix Ei by

∂gk(E)

∂ (Ei)pq

= −cT
k K(E)−1 ∂K(E)

∂ (Ei)pq

K(E)−1fjk (51)

for i = 1, . . ., m and p, q = 1, . . ., d. Matrix K(E) depends linearly on each Ei and
∂K(E)

∂ (Ei)pq

is

computed only once. As usual, cT
k K(E)−1 is computed by solving K(E)x = ck proceeding from

an available decomposition of K(E).
Subsequently, we consider von Mises stresses, see Li, Steven, and Xie [21]. Stresses act in

different directions at any point within the design space where the magnitude and the direction
vary. Even if none of these stresses exceeds the yield stress of the material, it is possible that the
combination of the stresses does. The von Mises criterion combines these different directions into
an equivalent stress such that it is comparable to the yield stress of the material, see Li, Steven
and Xie [21].

In the two-dimensional space, the von Mises stress σvm,j(Ei) in an element i, i = 1, . . . , m can
be formulated dependent on the load case j, j = 1, . . . , l by

σvm,j(Ei) =
√

σxx,j(Ei)2 + σyy,j(Ei)2 − σxx,j(Ei)σyy,j(Ei) + 3σxy,j(Ei)2 (52)

or in vector notation
σvm,j(Ei)

2 = σj(Ei)
T Tσj(Ei) (53)

where σj(Ei) = (σxx,j(Ei), σyy,j(Ei), σxy,j(Ei))
T is the element stress vector and

T =





1 −0.5 0
−0.5 1 0

0 0 3



 (54)

the coefficient matrix, see Li, Steven and Xie [21]. In a similar way the stress vector σj(Ei) and
the coefficient matrix is defined in the three-dimensional case.
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The element stress vector can also be computed by a compliance vector uj(E) dependent on
the load case j, j = 1, . . . , l by

σj(Ei) =

nig
∑

k=1

EiBi,kuj(E) (55)

with uj(E) = K(E)−1fj, see also (28). If we replace (55) into (53) we get

σvm,j(Ei)
2 =

nig
∑

k=1

uj(E)T BT
i,kET

i TEiBi,kuj(E) (56)

for i = 1, . . ., m and j = 1, . . . , l.
To ensure stability the von Mises stress may not exceed a special value sσ in each element i,

i = 1, . . . , m, and for each load fj , j = 1, . . . , l. These nonlinear constraints can be added to the
standard formulation (FMO) or the displacement formulation (FMO-D) to get

(FMO-DS)







min
E,α

α

s.t.
m∑

i=1

trace(Ei) ≤ V

trace(Ei) ≤ ρ i = 1, . . . , m

fT
j K(E)−1fj ≤ α j = 1, . . . , l

CK(E)−1fj ≤ δ j = 1, . . . , l

nig∑

k=1

uj(E)T BT
i,kET

i TEiBi,kuj(E) ≤ sσ j = 1, . . . , l, i = 1, . . . , m

Ei − ρI � 0 i = 1, . . . , m

(57)

where uj(E) is implicitly defined by solving the system of linear equation K(E)uj(E) = fj for a
load j, j = 1, . . . , l, see also (28). Derivatives of the stress constraints are computed by

∂

∂ (Ei)pq

nig
∑

k=1

uj(E)T BT
i,kET

i TEiBi,kuj(E) =

− 2
nig∑

k=1

uj(E)T ∂K(E)

∂ (Ei)pq

K−1(E)BT
i,kET

i TEiBi,kuj(E)

+ 2
nig∑

k=1

uj(E)T BT
i,k

∂Ei

∂ (Ei)pq

TEiBi,kuj(E)

(58)

for i = 1, . . ., m, p, q = 1, . . ., d, and j = 1, . . ., l.
Stress constraints do not satisfy the linear independency constraint qualification, see Kočvara

and Stingl [17]. Thus the numerical solution can become unstable.
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7 Numerical Realization and Test Results

7.1 Implementation and Test Environment

FMO problems are to be solved by the SCP solver SCPIP of Zillober [34]. Design variables are
the entries of the elasticity matrices Ei, i = 1 . . ., m in a given order. The dimension is 6m + 1
in the two- and 21m + 1 in the three-dimensional case. Only for isotropic materials we are able to
reduce their number significantly. One additional variable is needed to store the artificial variable
α.

The main program organizes the problem formulation as well as the function and gradient
evaluations and consists of six parts, see Figure 3. The first part retrieves FE- and FMO-data from
the platform MOPED, see Kočvara, Stingl and Werner [18] and Hörnlein, Kočvara and Stingl [10].
The second part utilizes these information to compute the derivatives of the global stiffness matrix
and its value at the current iterate. The linear system (28) is solved by the NAG routine MA47,
see Duff and Reid [6], followed by the computation of function and gradient values. The last step
consists of calling SCPIP, which on the other hand calls an appropriate solver for the separable
and convex subproblems generated in each iteration step.

The Fortran subroutines are documented in an appendix. Compliance constraints and the
objective function are scaled. Moreover, an active set strategy is performed to reduce the number

of approximated constraints in the subproblems
(

P
(k)

sub

)

. The corresponding tolerance for detecting

an active constraint must be carefully selected to reduce on the one hand the number of constraints
as much as possible and on the other hand to avoid cycling if the parameter is too small.

Numerical results are obtained under Windows XP Professional x64 and an Intel Core 2 Duo
6600 processor using the Intel Fortran Compiler Version 9.1 including preprocessor.

For checking optimality, we use the KKT conditions shown in (3). The code SCPIP, see
Zillober [34], supports additional stopping criteria listed in Table 2.

Stopping condition Default Value

KKT condition (3) satisfied, ‖∇xL(x, y)‖∞ ≤ ǫ ǫ = 1 · 10−5 0

Maximal number of iterations achieved 500 1

Gradient of objective function at a feasible point close to zero,
‖∇f(x)‖∞ ≤ ǫ ǫ = 1 · 10−5 2

No alterations of optimization variables and objective function ǫ1 = 1 · 10−5

|f (k) − f (k−1)| ≤ ǫ1,
|f(k)−f(k−1)|

f(k−1) ≤ ǫ2, max
i=1,...,n

|x
(k)
i

−x
(k−1)
i

|

x
(k−1)
i

≤ ǫ2 ǫ2 = 1 · 10−5 3

Table 2: Stopping Criteria.

Two simple scalable structures are considered for debugging and for testing the standard FMO
formulation (FMO) with one and two load cases, see Figure 4.
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Figure 3: Program Architecture.

Figure 4: Academic Standard Testcases.

A graphical representation of the results is given by plotting the trace of the elactisity matrices
in each element Ei, i = 1, . . . , m. In Figure 5 the colormap of the plot is shown. The left hand
side stands for a stiff material, i.e., the trace is large, while the right hand side represents a low
value of the trace.

Figure 5: Colormap.
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7.2 Isotropic Material

Isotropic materials allow to replace PSD constraints by additional linear constraints, see Section 5.1.
Table 3 shows the number of variables and constraints passed to SCPIP. The compliance functions
and the objective function are scaled by two parameters called S1 and S0. S0 is dependent on
the size of the grid and is given by S0 = m · c, with c = 104 and m the number of elements.
The scaling factor S1 is shown in Table 3. Numerical results are obtained for ρ = 1, V = m

2
and ρ = 10−3. The termination accuracy of SCPIP is 10−5 and no active set strategy is used.
Calculation times, separately for the internal work to solve the convex and separable subproblem,
and number of iterations are presented in Table 4 for the MMA version of SCPIP, i.e., without
line search. Moreover, the values of the objective function as well as a measure for optimality, i.e.,
‖∇xL(x, y)‖∞, and the stopping reason of Table 2 are shown in Table 4. The linear constraints are
handled as nonlinear ones, see Section 2. Figures 6 to 11 show the resulting material distributions
first for one, then two load cases.

Name # of elements # of variables # of constraints S1 Loads

Canti11 i 2,376 4,753 7,130 0.3 · 10−3 1
Canti12 i 4,726 9,453 14,180 0.3 · 10−2 1
Canti13 i 9,751 19,503 29,255 0.3 · 10−2 1

Canti21 i 1,176 2,353 3,531 0.3 · 10−4 2
Canti22 i 4,851 9,703 14,556 0.3 · 10−1 2
Canti23 i 9,591 19,183 28,776 0.3 · 10−4 2

Table 3: Dimensions for Isotropic Material.

Name Iterations SCPIP Model Objective KKT Stopping
(h:min ) (h:min) Function Condition Reason

Canti11 i 51 0:04 0:07 40.12 0.99 · 10−5 0
Canti12 i 384 1:47 3:19 40.17 0.61 · 10−4 3
Canti13 i 188 3:38 6:50 40.38 0.36 · 10−5 0

Canti21 i 82 0:02 0:03 14.63 0.97 · 10−5 0
Canti22 i 137 0:51 1:13 14.97 0.52 · 10−4 3
Canti23 i 13 0:18 0:44 20.17 0.86 · 10−5 0

Table 4: Results for Isotropic Material.

Figure 6: Canti11 i
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Figure 7: Canti12 i

Figure 8: Canti13 i

Figure 9: Canti21 i

Figure 10: Canti22 i
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Figure 11: Canti23 i

7.3 Anisotropic Material

The same benchmark problems are used to test the Cholesky approach for anisotropic materials as
presented in Section 5.2. Table 5 shows the number of variables and constraints passed to SCPIP.
Two scaling parameters S0 and S1 are introduced one for the objective function and one for the
compliance constraints. Problem parameters are chosen such that S0 = m · c, c = 104, ρ = 1,
ρ = 0.1, and V = m

3 . Termination accuracy of SCPIP is 10−5 and the active set method with

tolerance −4 · 10−1 is selected, i.e., all constraints are taken into account with a function value
smaller than 4 · 10−1 as well as those whose Lagrange multipliers are positive and were active in
the previous iteration. The parameter values for S1 are shown in Table 5. The resulting problem
is solved by SCPIP without line search.

Calculation time and number of iterations are presented in Table 6, separately for the internal
work to solve the convex and separable subproblem, and the function and gradient evaluations
including the solution of the linear system. Objective function values, a measure for optimality,
i.e., ‖∇xL(x, y)‖∞, and the stopping criteria, see Table 2, are shown in Table 6. Figures 12 to 17
show the resulting material distributions first for one, then for two load cases.

Name # of elements # of variables # of constraints S1 Loads

Canti11 a 351 2,107 353 1.5 1
Canti12 a 2,376 14,257 2,378 100 1
Canti13 a 4,726 28,357 4,728 100 1

Canti21 a 406 2,437 409 1.5 2
Canti22 a 1,176 7,057 1,179 1.5 2
Canti23 a 4,851 29,107 4,854 100 2

Table 5: Dimensions for Anisotropic Material.
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Name Iterations SCPIP Model Objective KKT Stopping
(h:min ) (h:min) Function Condition Reason

Canti11 a 116 0:01 0:01 23.25 1.10 · 10−1 3
Canti12 a 88 1:12 0:13 149.94 0.29 · 10−3 3
Canti13 a 308 6:48 0:41 154.57 0.26 · 10−3 3

Canti21 a 161 0:01 0:01 21.72 0.26 · 10−1 3
Canti22 a 126 0:11 0:04 21.67 0.76 · 10−2 3
Canti23 a 74 5:41 0:48 35.01 0.41 · 10−1 3

Table 6: Results for Anisotropic Material.

Figure 12: Canti11 a

Figure 13: Canti12 a

Figure 14: Canti13 a
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Figure 15: Canti21 a

Figure 16: Canti22 a

Figure 17: Canti23 a

To show that the optimization problem (FMO2) introduced in Section 4 is more restrictive and
causes instabilities, the corresponding calculations of the Cholesky approach are also considered.
The difference to the approach shown in Section 5.2 is an additional lower bound on the trace,

ρ′ ≤ ‖Li‖2
F , i = 1, . . . , m (59)

and the lower bounds on the diagonal entries of Li, i = 1, . . . , m are zero instead of ρ. The

problem is solved using SCPIP without line search. Parameter values are S0 = m · c with c = 104,
S1 = 0.3 · 10−3, ρ = 1, ρ′ = 0.001, and V = m

3 . Termination accuracy of SCPIP is 10−5 and the

active set method with tolerance −2 · 10−1 is selected. Note that using this approach the number
of constraints increase by the number of elements compared to problem formulation (FMO). The
results are shown in Table 7.
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Name Iterations SCPIP Model Objective KKT Stopping
(h:min ) (h:min) Function Condition Reason

Canti11 a 99 0:03 0:01 18 0.93 · 10−2 3
Canti12 a 180 4:11 0:28 101.54 0.31 · 10−2 3
Canti13 a 223 12:26 2:14 102.32 0.67 · 10−1 3

Canti21 a 193 0:05 0:02 18 0.34 · 10−1 3
Canti22 a 110 0:10 0:04 17.38 0.58 · 10−3 3
Canti23 a 500 8:56 5:17 20.31 0.29 · 10−1 3

Table 7: Results for Anisotropic Material, Formulation (FMO2).

The large differences in the objective function values result from the large value of ρ used in
formulation (FMO). This parameter has to be adapted carefully such that on the one hand no
instabilities arise and on the other hand the formulation is not too restrictive, i.e., results in worse
objective function values.

8 Conclusions

In this paper, we describe different ways to apply a sequential convex programming method to solve
free material optimization problems. Interfaces to the external solvers PENNON and CONERML
are outlined. Moreover, the formulas for attaching displacement and stress constraints are derived,
also for the derivatives. For the standard formulation without displacement and stress constraints,
numerical results are presented obtained for two simple academic test problems. The maximum
number of optimization variables is about 30.000.

The numerical tests show the feasibility of the approach based on optimizing over the Cholesky
factors of the elasticity matrices. However, this approach needs a careful setting of some toler-
ances. Its disadvantage is that linear constraints, e.g., bounds for traces, become nonlinear. More
analytical and numerical investigations are necessary to understand the instabilities.

To solve larger and more practically relevant FMO problems, the linear equation solver MA47
used for computing the compliance vector, needs to be exchanged by a more powerful one.

The bottleneck is the solution of convex and separable subproblems generated by SCPIP and
the necessity to handle positive semidefinite matrix variables directly. We hope that alternative
approaches based on applying the mentioned external solvers PENNON and CONERML will allow
us to solve larger and more realistic FMO problems in a robust way.
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[11] Hörnlein H., Kočvara M., Werner R. Material optimization: bridging the gap between con-
ceptual and preliminary design. Aerospace Science and Technology, 5, 2001.
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APPENDIX: Program Documentation

Subroutine calls:
CALL SIMUL (DOF, ELEMENTS, NLC, NIG)
CALL FGRO1 (U, DUMMY, FORCE, NONGRO, INTGRO, I)
CALL FGRO2 (I, BGES, NONZERO, ROW, COLUMN, VOLELE)

Usage:

These subroutines are part of MOPED, see Kočvara, Stingl and Werner [18] and Hörnlein,
Kočvara and Stingl [10], and provide all relevant FMO data.

Definition of parameters:

DOF degrees of freedom
ELEMENTS number of elements
NLC number of load cases
NIG number of Gauss integration points
U(DOF*NLC) compliance vector (here: dummy variable of same size)
DUMMY dummy variable
FORCE(DOF) force vector for one special load case
NONGRO(DOF) position of nonzero entries of the force vector
INTGRO number of nonzero entries in force vector
I index
BGES(3*4*8) values of Bi,k to compute global stiffness matrix
NONZERO number of nonzero entries of BGES
ROW(3*4*8) row number of entry of BGES
COLUMN(3*4*8) column number of entry of BGES

Subroutine calls:
CALL DERV GS (ELEMENTS, AROW, ACOLUMN, ARRAYB,

ABLEITA, ABLEITI, SPALTEGES, NN, A,E,
LAENGE, NNT)

CALL GS (ABLEITA, ABLEITI,
E, NN, NNT, A, ACOLUMN, AROW,
LENGTH, ELEMENTS)

Usage:

These two subroutines compute the values of the global stiffness matrix. As it depends linearly on
the design variable E, it is computed once in the subroutine DERV GS. The derivative is stored in
two arrays for the values and the positions. The second subroutine multiplies the stiffness matrix
with the actual value of the design variable. To save storage the global stiffness matrix is defined
by three vectors, i.e., one for the row numbers, one for the column numbers, and one for the values.

Definition of parameters:

ELEMENTS number of elements
E(ELEMENTS*6+1) design variable E and α

ARRAYB(36,3*ELEMENTS) array of all matrices Bi,k

SPALTEGES(36*ELEMENTS) vector of positions of ArrayB
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ABLEITA(36,6*ELEMENTS) array of derivative values of K(E)
ABLEITI(36,2*ELEMENTS) array of positions of derivative of K(E)
A(LENGTH) global stiffness matrix K(E)
AROW(LENGTH) row number of entry A
ACOLUMN(LENGTH) column number of entry A
LENGTH length of vector A, AROW, ACOLUMN

Subroutine calls:
CALL MA47ID (SCNTL,SICNTL)
CALL MA47AD (DOF,LENGTH,AROW,ACOLUMN,IW,LIW,SKEEP,

SICNTL,SRINFO,SINFO)
CALL MA47BD (DOF,LENGTH,ACOLUMN,A,LA,IW,LIW,SKEEP,SCNTL,

SICNTL,IW1,SRINFO,SINFO)
CALL MA47CD (DOF,A,LA,IW,LIW,W,RHS,IW1,SICNTL)

Usage:

These functions solve a system of linear equations given by K(E)uj(E) = fj , j = 1, . . . , l, see
Section 4. For further details see Harwell Subroutine Library (HSL).

Definition of parameters:

A(LENGTH) values of left hand side K(E)
AROW(LENGTH) row number of value of A
ACOLUMN(LENGTH) column number of value of A
LENGTH number of entries of A, AROW, ACOLUMN
RHS(DOF) right hand side
DOF system size

Subroutine calls:
CALL FUNCTION (F ORG, H ORG, ELEMENTS, N, MIE, E,

VOL, ARRAYFORCE, U, DOF, NLC,
BETA,SKAL, NN, SKAL2)

CALL GRADIENTS (ELEMENTS, ABLEITA, IEDERV, DOF, IERN, IECN,
NN, U, NLC,ACTIVE, MIE, DF,IELENG, SKAL,
NB, ABLEITI, E, VOL, SKAL2)

Usage:

These are subroutines for computing function and gradient values of the FMO problem.

Definition of parameters:

F ORG objective function value
H ORG(MIE) constraint values
ELEMENTS number of elements
N number of variables
MIE number of inequality constraints
E(6*ELEMENTS +1) optimization variables
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VOL upper bound for volume constraints
ARRAYFORCE(NLC, DOF) array containing the force vectors
U(NLC*DOF) displacement vector
DOF degrees of freedom
NLC number of load cases
BETA upper bound for trace constraints
SKAL scaling factor for compliance constraints
SKAL2 scaling factor for objective function
DF(ELEMENTS*6+1) derivative of objective function
IELENG number of nonzero derivatives of constraints
IEDERV(IELENG) values of derivatives
IERN(IELENG) row number of derivative items (variable)
IECN(IELENG) column number of derivative items (constraint)
ACTIVE(MIE) vector of active constraints
ABLEITA(36,6*ELEMENTS) array of derivative values of K(E)
ABLEITI(36,2*ELEMENTS) array of derivative positions of K(E)

Subroutine call:
CALL SCPIP30 (N, MIE, MEQ, IEMAX, EQMAX, X0, X L, X U, F ORG,

H ORG,G ORG, DF, Y IE, Y EQ, Y L, Y U, ICNTL, RCNTL,
RINFO, NOUT,R SCP, RDIM, R SUB,RSUBDIM, I SCP, IDIM,
I SUB,INFO, ISUBDIM, ACTIVE,MODE, IERR,IERN, IECN,
IEDERV, IELPAR, IELENG, EQRN, EQCN,EQCOEF, EQLPAR,
EQLENG, MACTIV, SPIB, SPIBDIM, SPDW, SPDWDIM,
SPSTRAT, LINSYS)

Usage:

SCPIP is an implementation of the sequential convex programming algorithm of Zillober [34].
The result is the optimal solution or, in case of early termination, an error flag.

Definition of parameters:

N number of variables
MIE number of inequality constraints
MEQ number of equality constraints
IEMAX dimension of inequality dependent arrays
EQMAX dimension of equality dependent arrays
X0(N) initial guess of solution, last iterate on return
X L(N) lower bounds of the variables
X U(N) upper bounds of the variables
F ORG objective function value of last iterate
H ORG(IEMAX) values of the inequality constraints at last iterate
G ORG(EQMAX) values of equality constraints at last iterate
DF(N) gradient of the objective function at X0
Y IE(IEMAX) Lagrange multipliers for inequality constraints at last iterate
Y EQ(EQMAX) Lagrange multipliers for equality constraints at last iterate
Y L(N) Lagrange multipliers for lower bounds on variables at last iterate

32



Y U(N) Lagrange multipliers for upper bounds on variables at last iterate
ICNTL(14) integer parameter array

ICNTL(1): 1=MMA, 2=SCP
ICNTL(2): strategy of asymptotes
ICNTL(3): maximal number of iterations
ICNTL(4): output level
ICNTL(5): maximal number of line search evaluations
ICNTL(6): type of convergence check
ICNTL(7): linear equation solver
ICNTL(11): warmstart
ICNTL(14): subproblem solver

RCNTL(6) double precision parameter array
RCNTL(1): accuracy
RCNTL(2): overflow
RCNTL(3): parameter for active set strategy

INFO(23) output information array
RINFO(5) output real information array
NOUT output unit number
R SCP(RDIM) double precision working array of dimension RDIM
RDIM dimension of double precision working array
R SUB(RSUBDIM) double precision working array of dimension RSUBDIM
RSUBDIM dimension of working array R SUB
I SCP(IDIM) integer working array of dimension IDIM
IDIM dimension of I SCP
I SUB(ISUBDIM) integer working array of dimension ISUBDIM
ISUBDIM dimension of I SUB
ACTIVE(IEMAX) indices of active inequality constraints
MODE direct and reverse communication
IERR error flag
IERN(IELPAR) row numbers of non-zero entries of Jacobian of inequality constrains
IECN(IELPAR) column numbers of non-zero entries of Jacobian of inequality constraints
IEDERV(IELPAR) non-zero entries of Jacobian of inequality constraints
IELPAR maximum number of non-zero entries of Jacobian of inequality constraints
IELENG actual number of non-zero entries of Jacobian of inequality constraints
EQRN(EQLPAR) row numbers of non-zero entries of Jacobian of equality constrains
EQCN(EQLPAR) column numbers of non-zero entries of Jacobian of equality constraints
EQCOEF(EQLPAR) non-zero entries of Jacobian of equality constraints
EQLPAR maximal number of non-zero entries of Jacobian of equality constraints
EQLENG actual number of non-zero entries of Jacobian of equality constraints
MACTIV number of active constraints in subproblem model
SPIB(SPIBDIM) integer working array for solving the subproblem
SPIBDIM dimension of SPIB
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SPDW(SPDWDIM) double precision working array for solving the subproblem
SPDWDIM dimension of SPDW
SPSTRAT subproblem solution strategy
LINSYS linear system solver

To pass function or gradient values SCPIP30.f works with reverse communication indicated by
negative value of IERR. The requested values are then computed in the main program.

-1 compute only function values
-2 compute only gradient values

Subroutine call:
CALL PENNLPF (N, 0, MIE, NBLOCKS, BLOCKS, N, N,X L, X U,

LCONSTRAINTS, UCONSTRAINTS, LMBOUNDS,
UMBOUNDS,X, Y1,USRF, USRDF,
USRHF, USRG, USRDG, USRHG, IOPTIONS, DOPTIONS,
IRESULTS,DRESULTS, IERR)

Usage:

PENNLPF is a nonlinear optimization solver implemented in C and is capable to handle semidefi-
nite constraints. In this context PENNLPF is used to solve the convex and separable subproblems
formulated by SCPIP. PENNLPF calls six subroutines, i.e., to compute the objective function
value, the derivatives of the objective, the Hessian of the objective, the constraint function values,
the derivatives of the constraints, and the Hessian of the constraints. These subroutines are
implemented in FORTRAN.

Definition of parameters:

N number of elements
MIE number of inequality constraints
NBLOCKS number of blocks in the positive semidefinite matrix (number of elements)
BLOCKS(NBLOCKS) size of positive semidefinite block matrix (2D: 3, 3D: 6)
LCONSTRAINTS(MIE) lower bound of constraints (here: -infinity)
UCONSTRAINTS(MIE) upper bound of constraints (here: 0)
LMBOUNDS(N) lower bound for variable (here: 3.333e-3)
UMBOUNDS(N) upper bound for variable (here: infinity)
X(N) optimization variable
Y1(MIE) Lagrangian multipliers
USRF objective function value
USRDF first order derivative of objective
USRHF Hessian of objective
USRG constraint values
USRDG first order derivatives of constraints
USRHG Hessian of constraints
IOPTIONS(19) integer array of settings
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DOPTIONS(13) double array of settings
IERR default value
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