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Abstract

The purpose of this paper is to present some numerical tools which facilitate the interpretation of
simulation or data fitting results and which allow to compute optimal experimental designs. They help
to validate mathematical models describing the dynamical behavior of a biological, chemical, or phar-
maceutical system, without requiring a priory knowledge about the physical or chemical background.
Although the ideas are quite general, we will concentrate our attention to systems of one-dimensional
partial differential equations and coupled ordinary differential equations. A special application model
serves as a case study and is outlined in detail. We consider the diffusion of a substrate through
cutaneous tissue, where metabolic reactions are included in form of Michaelis-Menten kinetics The
goal is to simulate transdermal drug delivery, where it is supposed that experimental data are avail-
able for substrate and metabolic fluxes. Numerical results are included based on laboratory data to
show typical steps of a model validation procedure, i.e., the interpretation of confidence intervals, the
compliance with physical laws, the identification and elimination of redundant model parameters, the
computation of optimum experimental designs and the identifiability of parameters by determining
weight distributions.

Keywords: parameter estimation, data fitting, least squares optimization, statistical analysis, confidence
interval, optimum experimental design, partial differential equation, method of lines, substrate diffusion,
cutaneous tissue, transdermal application

1 Introduction

The numerical identification of unknown parameters of a dynamical model is extremely important in
many technical, natural science, and medical disciplines. In this paper, we proceed from a system of
one-dimensional partial differential equations. The goal is to minimize distances of appropriate fitting
criteria depending on a set of model parameters and the solution of the partial differential equation from
experimental data taken at predetermined time and spatial values. The underlying optimization problem
consists of minimizing a sum of squared functions given in the form

s(p) :=
l∑

i=1

(h(ti, p) − yi)2 (1)

with experimental time values ti and measured data yi, i = 1, . . ., l.
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We assume that a model function h(t, p) is available depending on a vector p ∈ IRn, the model
parameters to be identified, and a time variable t. By varying p, the mathematical model is to be fitted
to a set of measurements by a least squares estimate.

The fitting criterion h(t, p) depends on the solution of a system of one-dimensional, time-dependent
partial differential equations,

ut = f(x, t, u, ux, uxx, p) , (2)

i.e., h(t, p) depends on the time t, the parameter vector p, and the solution u(x, t, p) of (2) at fixed spatial
values. In addition, there are initial values for the solution u(x, 0, p) typically formulated for t = 0 and
boundary values for specifying function values or partial derivatives. As usual, the lower index t denotes
the partial derivative subject to t, the lower index x the first partial derivative subject to x, and xx the
second partial derivative subject to x.

More extensions of the mathematical model are possible, for example disjoint spatial integration areas
with non-continuous transitions, coupled ordinary and algebraic equations, arbitrary boundary conditions,
algebraic partial differential equations, dependencies of the fitting criterion also on higher derivatives,
break or switching points, dynamic, i.e., time-dependent constraints, algebraic equality or inequality
constraints, etc., see Schittkowski [28]. All these additional equations may depend on parameters to be
estimated.

A standard discretization procedure is known as the method of lines, see Schiesser [22]. We fix the
spatial variable x at a set of equidistant points, the lines, and approximate the corresponding first and
second derivatives subject to x by an appropriate difference formula. Initial, boundary, and transition
conditions between different integration areas must be taken into account. The resulting large and even-
tually stiff system of ordinary differential equations can be integrated by numerical standard techniques,
see, e.g., the implicit methods developed by Hairer and Wanner [15]. For the iterative solution of the
least squares problem, we propose any of the available Gauss-Newton and related methods, e.g., the codes
DN2GB of Dennis et al. [7], NLSNIP of Lindström [17], or DFNLP of Schittkowski [24, 30].

A special model is investigated in detail in form of a case study, that describes the diffusion of a
substrate (Ala-MNA) through cutaneous tissue, see Boderke et al. [3] or Wolf [42]. Two different layers
are considered, the metabolically active tissue and a passive porous membrane. Metabolic reactions
are taken into account by a Michaelis-Menten kinetics, leading to a system of two partial differential
equations in two different integration areas. Non-continuous transition conditions between both areas are
formulated. The underlying in-vitro experiment simulates transdermal drug delivery, where experimental
data are known for substrate and metabolic fluxes. To be able to compute the total amounts of a drug
entering and leaving the diffusion area, ordinary differential equations are coupled to the partial ones at
both boundary points.

Whenever a complex dynamical system is applied for simulating a real-life phenomenon, the main
question is whether the mathematical model predicts the observed behavior in a correct way. Typical
questions are:

1. Can model parameters be identified from given experimental data?

2. Are there redundant parameters and how can we identify them?

3. How do measurement errors in experimental data influence the parameter values?

4. How can we interpret confidence intervals?

5. What do we know about the steady-state?

6. Are fundamental physical or other laws satisfied, e.g., the mass balance equation?
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7. How can we predetermine optimal experimental design parameters?

Our intention is to outline a complete model validation process in form of a case study , i.e., we show
how numerical tests can be designed in a practical situation to answer these questions. The procedures
are general and can be applied to any other dynamical processes as well, see Schittkowski [32] for dynamic
models based on systems of ordinary differential algebraic equations.

An alternative approach for parameter estimation and optimum experimental design of flow reactors
is discussed in Carraro [6]. Investigation of the sensitivity matrix for reducing parameter correlations is
proposed by Thomasethi and Cobelli [38] for input-output models based an ordinary differential equations.
A statistical procedure for model selection is found in Bortz and Nelson [4], and a maximum-likelihood
estimator for testing parameter sensitivities is derived by Gorfine and Freedman [12], in both cases applied
to specific biological ordinary differential equation models.

Some statistical tool to analyze these questions are summarized in Section 2. In many cases, data
fitting models are overdetermined, lead to too large confidence intervals, and prevent a precise identifi-
cation of model parameters. Thus, we first present a brief outline of confidence intervals in Section 2.1.
The notation is introduced and some formulas are presented for determining confidence regions needed
subsequently. A numerical procedure is introduced in Section 2.2 based on successive elimination of the
least important parameter until a given significance level is reached. Once we have a reliable model, we
might be interested in the question how to compute the best, i.e., optimal set of design parameters based
on the available mathematical equations. Section 2.3 contains a brief outline of optimum experimental
design and some mathematical details, e.g., how to compute derivatives.

A pharmaceutical diffusion process serves as a case study, the transdermal application of a substrate
including generation of a metabolite. The mathematical model is completely described in Section 3.

A brief outline of the numerical algorithms used to discretize the partial differential equation and to
solve data fitting and optimum experimental design problems is given in Section 4.

Numerical test results are summarized in Section 5. Proceeding from available laboratory data, a
typical first step is to estimate given parameters, to compute a least squares fit and confidence intervals,
and to plot the results. The priority analysis allows to figure out those parameters, which are considered
as redundant and which can be eliminated, see Section 5.1. By analyzing plots visually, the steady-
state situation and a simple physical plausibility argument based on the mass conservation law help to
validate the model, see Section 5.2. After identifying design parameters, numerical values for their optimal
choice are computed following the procedure of Section 2.3, confer Section 5.3. Additional optimization
of weights leads to the observation, that the number of non-zero weights is identical to the number
of parameters, a further hint that the parameters we obtained from the priority analysis are uniquely
identifiable.

2 Statistical Analysis Tools

2.1 Confidence Intervals

We proceed from a general nonlinear model in its simplest form

η = h(p, t) + ε . (3)

h(p, t) is our model function depending on a parameter vector p ∈ IRn and t ∈ IR is the independent
variable, also called explanatory or regression variable, in most cases the time. The function h(p, t) is
supposed to be differentiable subject to p ∈ IRn, and at least continuous with respect to t. It is assumed
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that there is a true parameter value p�, which is unknown and which is to be estimated by a least squares
fit. The response η ∈ IR is the dependent model variable.

To estimate p� from given experimental data ti and yi, i = 1, . . ., l, we minimize the least squares
function (1) over all p ∈ IRn. Let p̂ denote the solution of this data fitting problem. The question we are
interested in is how far away p̂ is from the true parameter p�.

It is assumed that the time values ti are given a priori without errors, and that εi denotes the statistical
error of the measurements or the response variable, respectively. As usual, we suppose that the errors
εi = h(p�, ti) − yi are independent and normally distributed with mean value zero and known constant
variance σ2, i.e., εi ∼ N(0, σ2) for i = 1, . . ., l.

The basic idea is to linearize the nonlinear model

h(p) := (h(p, t1), . . . , h(p, tl)T

in a neighborhood of p� and to apply linear regression analysis, since linear models are very well under-
stood, see Seber [35]. Under additional regularity assumptions, p̂ and

σ̂2 := s(p̂)/(l − n)

are consistent estimates of p� and σ2, respectively. They converge with probability one to the true values,
and are asymptotically normally distributed as l goes to infinity. Moreover, we know that due to the
normal distribution of the errors, p̂ is also a maximum likelihood estimator.

The error in parameters, p̂− p�, is approximately normally distributed with mean value 0 and covari-
ance matrix I�−1, where

I� :=
1
σ2

∇h(p�)∇h(p�)
T

,

see Seber and Wild [36]. An approximate 100(1 − α)% confidence region for p� is given by the set

{p : (p − p̂)T Î(p − p̂) ≤ nFα
n,l−n} , (4)

where Fα
n,l−n denotes the F-distribution with (n, l− n) degrees of freedom within the linearization error,

and where
Î :=

1
σ̂2

∇h(p̂)∇h(p̂)T (5)

estimates I�. This result is very similar to the corresponding confidence region for linear models.
For a numerical implementation, however, (4) is inconvenient. 100(1 − α)% confidence intervals for

the parameters are given by [
p̂i − t

α/2
l−n

√
d̂ii , p̂i + t

α/2
l−n

√
d̂ii

]
(6)

for the i-th individual model parameter value p�
i , i = 1, . . ., n. In this case, p̂i is the i-th coefficient of

p̂ and d̂ii the i-th diagonal element of Î−1, see also Gallant [10] or Donaldson and Schnabel [9]. tl−n

denotes the t-distribution with l − n degrees of freedom.
However, (6) is valid only approximately depending on the quality of the linearization or the curvature

of h(p, t), respectively. Donaldson and Schnabel [9] present some examples, where the confidence intervals
are very poor. Thus, we have to be very careful when computing (6) without additional linearization
checks.
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2.2 Significance Levels by Eigenvalue/-vector Analysis of the Fisher Infor-
mation Matrix

Proceeding from a parameter estimation model, corresponding data, and a successful least squares fit,
significance levels of the estimated parameters are to be evaluated. If a model seems to be overdetermined,
i.e., contains too many parameters compared to the number of equations, the levels give an impression
of the significance of parameters and help to decide upon questions like
- which parameters can be identified,
- which parameters can be treated as constants,
- whether additional experimental should be added or not.

Moreover, overdetermined data fitting problems almost always lead to unstable and slow convergence of
Gauss-Newton-type least squares algorithms with a large number of iterations until termination tolerances
are satisfied.

We have seen in the previous section that Î−1 can be considered as an approximation of the covariance
matrix I�−1 and that p̂ is a least squares estimate for the true, but unknown parameter p�. Assumptions
are independent and normally distributed errors in the measurements with mean value 0 and variance
σ2.

A more rigorous analysis based on the maximum-likelihood function leads to the theorem of Cramér
and Rao, which states that the inverse of the so-called Fisher information matrix (5) is a lower bound
for the covariance matrix of the parameter errors. For a precise definition of this matrix and a proof see,
e.g., Goodwin and Payne [11].

Since all induced matrix norms are greater than the spectral radius of a matrix, we apply the L2-norm,
i.e.,

‖Î−1‖2
2 = |λmax(Î−1)| =

1
|λmin(Î)| . (7)

λmax and λmin denote the largest and smallest eigenvalues of a matrix, respectively. Since small eigen-
values of Î enforce large entries of the covariance matrix, we try to reduce them by successive elimination
of parameters corresponding to large eigenvector coefficients. The order by which the variables are elim-
inated, can be considered as an indication about their relative significance. The highest level reflects the
highest priority.

We proceed from a given significance tolerance γ > 0, known time values t1, . . ., tl, and an optimal
solution p̂ of the corresponding least squares data fitting problem. We try to satisfy

‖Î−1‖2
2 =

1
|λmin(Î)| < γ2 . (8)

Assuming a sufficiently accurate approximation of p�, the true parameter vector, we hope to get suffi-
ciently small variances.

Note that very small or zero eigenvalues lead to the conclusion that some parameters cannot be
estimated at all by the underlying model and the available data, or that there are combinations of
highly correlated parameters, see Caracotsis ans Stewart [5]. To detect the significant parameters on the
one hand and the redundant or dependent parameters on the other we apply a procedure described in
Schittkowski [32] in more detail, see also Schneider, Posten, and Munack [34] or Majer [19]. The idea
is to successively eliminate parameters until (8) is satisfied, which corresponds to the largest absolute
value of the eigenvector of the smallest eigenvalue λmin. The cycle is terminated in one of the following
situations:
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1. The smallest eigenvalue of the Fisher information matrix is smaller than a threshhold value, see
(8).

2. The parameter correlations are significantly reduced, e.g., by 25 %.

3. None of the above termination reasons is met and all parameters have been eliminated.

After termination, significance levels of the parameters are available. Level 1 corresponds to the first
eliminated variable, level 2 to the second, etc. The final level can be assigned to several parameters
indicating a group of identifiable parameters. Possible conclusions are to add more experimental data or
to fix some parameters for subsequent evaluations. Thus, the determination of significance levels is part
of the experimental design process to validate a parameter estimation model. It is recommended to scale
the parameters to the value one before starting the priority analysis. Note that the priority analysis does
not depend on any experimental data other than a set of time values.

It should be noted, however, that the proposed heuristic procedure is by no means justified by a
mathematically rigorous theory. For alternative approaches to identify system parameters, see for example
Bard [2], Ljung [18], van den Bosch and van der Klauw [39], Walter and Pronzato [40], or Banks and
Kunisch [1]. In these monographs, numerous methods are presented proceeding either from a statistical
analysis, theoretical model building, or more special model structures.

2.3 Experimental Design

Mathematical models describe the dynamical behavior of a system with the goal to allow numerical
evaluation of model parameters which cannot be measured directly. These parameters identify the system
under consideration, and must be verified by experiments. Experimental design depends on parameters
which have to be set in advance to be able to measure the output data of an experiment. Examples are
initial concentration of substrates, input feeds of a chemical reactor, temperature distributions, etc.

To determine the optimal experimental design parameters, we first have to find a suitable guess
for the model variables either from the literature or some preliminary experiments. We have seen in the
previous sections that the Fisher information matrix or the covariance matrix, respectively, determines the
confidence region (4) of the model parameters. Since we have additional freedom to setup an experiment
a priori, we can use the design parameters to minimize the volume of the corresponding ellipsoid based
on a suitable criterion.

To formalize the approach, we denote the model parameters by p ∈ IRnp and the design parameters
by q ∈ IRnq . Our model function is now extended by the design parameters, h(p, q, t), and we assume
that we know a set of experimental time values ti, i = 1, . . ., l. Moreover, we let

h(p, q) := (h(p, q, t1), . . . , h(p, q, tl)T

and denote by F (p, q) = ∇ph(p, q) the Jacobian matrix of h(p, q) subject to p ∈ IRnp , where q ∈ IRnq is
fixed. For simplicity, we assume that F (p, q) has full rank for all p and q.

A formal performance measure is available based on the covariance matrix C(p, q) = I(p, q)−1, where
I(p, q) = F (p, q)F (p, q)T denotes an approximation of the Fisher information matrix, and where we omit
a guess for the error variances of measurements to simplify the notation. In other words, we assume that
all experimental data are measured with constant error.

The volume of a confidence region for a given model parameter p ∈ IRnp is that of an an ellipsoid,
see (4), and the goal is to minimize its volume on the one hand, but on the other to prevent also
degenerate situations where the maximum and minimum eigenvalues drift away, i.e., where the ellipsoid
is compressed. This is to be achieved by adapting the design parameter q for a given model parameter p,
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which is obtained either from a preliminary experiment, literature, or a reasonable guess. Possible criteria
are available either for C(p, q) or I(p, q), respectively, depending on the procedure how to measure or
estimate the volume and the structure of the ellipsoid. The most popular ones are

D : det(C(p, q))

A : trace(C(p, q))

A� : -trace(I(p, q))

E : λmin(I(p, q))

E� or C : λmin(I(p, q))/λmax(I(p, q))

Here λmin(I(p, q)) and λmax(I(p, q)) denote the minimum and maximum eigenvalues of I(p, q). For a
more detailed discussion, see, e.g., Winer, Brown and Michels [41] or Ryan [21].

For our numerical implementation, we use the A-criterion, since the computationally attractive con-
fidence intervals by which the size of the ellipsoid is estimated, take only the diagonal elements of the
covariance matrix into account, see (6). This leads for each p ∈ IRnp to the optimization problem

q ∈ IRnq :
min trace(C(p, q))

ql ≤ q ≤ qu ,
(9)

where we add additional bounds for the variable q.
There remains the question how to compute the derivatives of the objective function

φ(q) := trace(C(p, q)) (10)

subject to q in an efficient way. Numerical differentiation of φ(q) subject to q by a difference formula
based on a previous numerical differentiation of h(p, q, t) subject to p by another difference formula for
computing F (p, q) is unstable because of accumulation of truncation errors. It is assumed that second
order analytical partial or mixed-partial derivatives are not available. Thus, we try to find a reasonable
compromise which nevertheless leads to sufficiently stable procedure.

As shown by Schittkowski [32], partial differentiation of the objective function of (9) subject to qk,
1 ≤ k ≤ nq, gives

∂

∂qk
φ(q) = −trace

(
I(p, q)−1

(
∂

∂qk
F (p, q)F (p, q)T

+ F (p, q)
∂

∂qk
F (p, q)T

)
I(p, q)−1

)
.

(11)

The mixed partial derivatives of h(p, q) subject to p and q are approximated by forward differences

∂2

∂qk∂pj
h(p, q, ti) ≈ 1

εkεj
((h(p + εjej , q + εkek, ti) + h(p, q, ti))

− (h(p, q + εkek, ti) + h(p + εjej , q, ti)))

(12)

for i = 1, . . ., l and j = 1, . . ., np. Here, ej ∈ IRnp and ek ∈ IRnq are the j-th and k-th unit vectors,
respectively, and εj , εk are suitable perturbation tolerances, e.g., chosen by εj = max(ν, |pj |)ε and εk =
max(ν, |qk|)ε with tolerances ε > 0 and ν > 0, which must be selected very carefully.
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The perturbation tolerance ε should not be too small. Depending on the condition number of the
information matrix, large values like ε = 0.01 or even ε = 0.1 are applicable and can lead to stable solution
processes subject to a surprisingly small optimality criterion.

The experimental design approach introduced in the previous section assumes that the time values
are known in advance. However, there are very many situations where one would like to know in advance
their approximate number and also their optimal locations, to improve the confidence intervals of the
parameters to be estimated, and to reduce the number of time-consuming or expensive experiments.

Our idea is to proceed from a given set of artificial time values which could be large and dense, and
to formulate an experimental design optimization problem as before by introducing weights wi, i = 1,
. . ., l. Thus, we replace the model function h(p, q, ti) by wih(p, q, ti) with additional weight factors wi,
i = 1, . . ., l, which are to be treated as optimization variables in our optimum design problem (9) and
which becomes

q ∈ IRnq , w ∈ IRl :

min trace(C(w, p, q))∑l
i=1 wi = 1 ,

ql ≤ q ≤ qu ,

τ ≤ wi ≤ 1 , i = 1, . . . , l .

(13)

The covariance matrix depends now on additional weights, i.e., on

F (w, p, q) := ∇ph(w, p, q) ,

h(w, p, q) := (w1h(p, q, t1), . . . , wlh(p, q, tl)T .

Note that for stability reasons, a small lower bound τ > 0 is introduced.
Corresponding partial derivatives of the objective function φ(w, q) subject to a weight wi are obtained

from
∂

∂wi
φ(w, q) = −trace

(
I(w, p, q)−1

(
∂

∂wi
F (w, p, q)F (w, p, q)T

+ F (w, p, q)
∂

∂wi
F (w, p, q)T

)
I(w, p, q)−1

)
.

(14)

see (11), and from
∂

∂wi
F (w, p, q) =

(
∂

∂pj
h(p, q, ti)

)
j=1,np;i=1,l

. (15)

Thus, we get the weight derivatives more or less for free, since the partial derivatives subject to the model
parameters are known from the computation of the objective function.

3 The Transdermal Diffusion Model

We consider the permeation of a substrate through cutaneous tissue with simultaneous metabolism and
through a subsequent passive porous membrane. Goal is the analysis and numerical simulation of trans-
dermal processes for developing new drugs and application devices, see, e.g., Guy and Hadgraft [13].
Especially the affects of various parameters influencing diffusion and metabolism can be studied in detail,
once a reliable model validated by experimental data is available.

A special laboratory experiment is to be modeled, where a donor contains a given volume and con-
centration of a substrate, e.g., Ala-MNA, that penetrates through a thin layer of a cutaneous tissue with
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thickness lT and through an underlying membrane with thickness lM with known porosity. l = lT + lM
is the total thickness of the diffusion area under consideration. From time to time, the concentration of
the substrate is measured on both sides of the membrane.

At the same time, a metabolite is generated because of enzymatic interactions, see Hotchkiss [16],
Hadgraft [14], or Guy and Hadgraft [13]. Also the concentration of this new substrate is measured on both
sides of the membrane. It is assumed that metabolism can be described by Michaelis-Menten kinetics,
see Pratt [20], that the distribution of metabolically active enzyms in the layer is homogeneous, and that
the mass transport is one-dimensional along the x-axis.

donor
cutaneous
tissue

porous
membrane receiver

� � �metabolite

� �substrate

To describe the mathematical model of the experiment as outlined above, we use the notation

lT - thickness of tissue,

lM - thickness of membrane,

l - total thickness of diffusion area, i.e., l = lT + lM ,

Km - Michaelis-Menten constant [nmol/mm3],

Va - volume of donor and receiver [mm3],

Fa - surface of the membrane [mm2],

Y0 - initial mass of substrate [nmol]

9



for design parameters and constants. Model parameters p = (p1, . . . , p9)T to be estimated, are

Ds
T - diffusion coefficient of substrate in tissue,

Ds
M - diffusion coefficient of substrate in membrane,

Dm
T - diffusion coefficient of metabolite in tissue,

Dm
M - diffusion coefficient of metabolite in membrane,

P s - distribution coefficient of substrate,

Pm - distribution coefficient of metabolite,

Vmax - metabolization rate,

T s - transition parameter of substrate,

T m - transition parameter of metabolite.

The dynamic variables we need to describe the process, are

us(x, t) - substrate concentration at x and t [nmol/mm3],

um(x, t) - metabolite concentration at x and t [nmol/mm3],

vs(t) - substrate mass at donor, i.e., for x = 0 [nmol],

ws(t) - substrate mass at receiver, i.e., for x = l [nmol],

vm(t) - metabolite mass at donor, i.e., for x = 0 [nmol],

wm(t) - metabolite mass at receiver, i.e., for x = l [nmol].

Two partial differential equations describe the diffusion through the skin and take the Michaelis-
Menten effect into account, see also Wolf [42], Steinsträsser [37], or Boderke et al. [3],

us
t (x, t) = Ds

T us
xx(x, t) − Vmaxu

s(x, t)
Km + us(x, t)

,

um
t (x, t) = Dm

T um
xx(x, t) +

Vmaxu
s(x, t)

Km + us(x, t)

(16)

for 0 < x < lT and t > 0. The corresponding initial values are us(x, 0) = 0 and um(x, 0) = 0 for all
x > 0, and us(0, 0) = Y0P

s/Va, um(0, 0) = 0. Diffusion of substrate and metabolite through membrane
are described by the equations

us
t (x, t) = Ds

M us
xx(x, t) ,

um
t (x, t) = Dm

M um
xx(x, t)

(17)

defined for lT < x < l and t > 0. Corresponding initial values are us(x, 0) = 0 and um(x, 0) = 0 for all x.
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Accumulation of mass fluxes at both sides of the two layers leads to the integrals

vs(t) = FaDs
T

∫ t

0

us
x(0, τ)dτ ,

vm(t) = FaDm
T

∫ t

0

um
x (0, τ)dτ ,

ws(t) = −FaDs
M

∫ t

0

us
x(l, τ)dτ ,

wm(t) = −FaDm
M

∫ t

0

um
x (l, τ)dτ .

(18)

From these equations we get four ordinary differential equations that are coupled to (16) and (17) to
obtain a dynamic system in standard form, i.e.,

v̇s(t) = FaDs
T us

x(0, t) ,

v̇m(t) = FaDm
T um

x (0, t) ,

ẇs(t) = −FaDs
M us

x(l, t) ,

ẇm(t) = −FaDm
M um

x (l, t)

(19)

for t > 0. They describe the behavior of substrate and metabolite at both end points, i.e., the mass
fluxes into and out of tissue and membrane. Initial conditions are vs(0) = Y0, vm(0) = 0, ws(0) = 0, and
wm(0) = 0.

Boundary conditions are formulated to couple the partial differential equations and the ordinary
differential equations, i.e.,

us(0, t) =
P s

Va
vs(t) ,

um(0, t) =
Pm

Va
vm(t) ,

us(l, t) =
P s

Va
ws(t) ,

um(l, t) =
Pm

Va
wm(t)

(20)

for all t > 0.
Between both integration areas we allow non-continuous conditions for the transition of substrate and

metabolite from tissue to membrane and vice versa, but require continuous mass flows, i.e.,

us(l−T , t) = T s us(l+T , t) ,

um(l−T , t) = T m um(l+T , t) ,

us
x(l+T , t) =

Ds
M

Ds
T

us
x(l−T , t) ,

um
x (l+T , t) =

Dm
M

Dm
T

um
x (l−T , t) .

(21)
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These conditions are to be valid for all t with t > 0. Here us(l−T , t) and um(l−T , t) denote the concentrations
of substrate and metabolite at the right tissue boundary and us(l+T , t) or um(l+T , t) the corresponding values
at left membrane boundary.

It is supposed that substrate and metabolite mass are measured at donor and receiver sides at different
times leading to the fitting functions vs(t), vm(t), ws(t), and wm(t).

4 Algorithms and Test Environment

In our case, partial differential equations are discretized by the method of lines, see Schiesser [22], which
is outlined briefly. More details about the approach chosen are found in Schittkowski [25, 26, 28, 33]. For
the first integration area we define 31 equidistant grid points and for the second 11 equidistant lines, i.e.,
the resulting system of ODEs consists of 82 equations, where we take the structure of the boundary and
transition conditions into account.

To approximate the first and second partial derivatives of u(x, t, p) at these points subject to the spatial
variable x, different alternatives are available. For our numerical tests, a 5-point difference formula for
first and second derivatives is used. The difference formula is adapted at the boundary to accept given
function and gradient values.

Whenever a boundary or transition condition is given in Dirichlet-form, we know the value of the
boundary function and use it to interpolate or approximate the function u(x, t, p) as described above. In
other words the corresponding function value of the right-hand side of the discretized system is replaced
by the value given. Alternatively a boundary condition may appear in Neumann-form. In this case
the derivative values at the boundary are replaced by the given ones before evaluating the second order
spatial derivative approximations.

Ordinary differential equations are added to the discretized system without any further modifications.
The resulting system of ordinary differential equations is integrated by the implicit ODE solver RADAU5
of Hairer and Wanner [15]. The absolute and relative error tolerance is set to 10−7.

The resulting least squares problem is solved by the SQP-Gauss-Newton code DFNLP of Schitt-
kowski [24, 30]. The original problem is transformed into a general nonlinear programming problem by
introducing additional variables and constraints. It can be shown that typical features of a Gauss-Newton
and quasi-Newton method are retained, see Schittkowski [24, 28]. The resulting nonlinear programming
problem is solved by a standard SQP code called NLPQLP, cf. Schittkowski [23, 31]. Stopping tolerance
for checking the KKT optimality conditions is 10−10.

Experimental design requires the numerical solution of complex optimization problems, where mixed
partial derivatives of second order are required to compute the gradient of the objective function, see
(11) and (14). As outlined in Section 2.3, forward differences are applied to approximate mixed partial
derivatives of h(p, q, t). Since the Fisher information matrix I(p, q) is often ill-conditioned or even rank-
deficient, the generalized inverse is evaluated by the Lapack routine DGELSS which applies a singular
value decomposition (SVD).

The numerical modules are all combined within one Fortran code called PDEFIT, see Schittkowski [26,
33], which is executed from an interactive data fitting system EASY-FIT, see Schittkowski [27, 28]. The
whole package can be downloaded from the home page of the author1 and the numerical tests of the
subsequent section can be repeated. Model functions are provided in form of a special modeling language
called PCOMP, see Dobmann et al. [8] or Schittkowski [29], which is based on a Fortran-similar syntax.
Since model functions are interpreted during runtime, compilation and linking is prevented, and new
model variants are tested rapidly.

1http://www.klaus-schittkowski.de/
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i ti y1
i y2

i y3
i y4

i

1 0 323.80 - - -
2 2 315.79 2.35 1.7 0.78
3 5 306.17 6.56 4.11 2.34
4 7 297.34 9.1 5.67 3.15
5 10 292.15 13.51 7.39 5.32
6 20 265.91 26.66 12.1 11.79
7 30 242.96 39.26 15.06 18.46

Table 1: Experimental Data

Numerical tests are performed on a Dual Core AMD Opteron(tm) processor running with 1.81 GHz
under Windows XP64.

5 Numerical Results

5.1 Step 1: Data Fitting and Significance Analysis

The laboratory experiment uses the following design parameters by which experiments are conducted,

lT = 0.005 mm,

lM = 0.005 mm,

Va = 3, 000 mm3,

Fa = 63.6 mm2,

Y0 = 324.0 nmol,

The Michaelis-Menten constant is set to Km = 7.0 · 10−3 as found in the literature, see Boderke et al. [3]
for details. Experimental times and measured substrate concentrations are shown in Table 1 for four
measurement sets, seven time values, and 27 experimental data to be fitted over a time horizon of 30
min.

The laboratory conditions enforce that only a limited number of data can be measured within a very
short period of 30 minutes. Corresponding model parameters to be estimated and starting values are
found in Table 2. The initial concentration Y0 is added to the list of model parameters to take possible
measurement errors into account.

The least squares code DFNLP computes a solution subject to the termination tolerance of 10−10

after 361 iterations and reduces the residual scaled by the sum of scaled squared measurement values from
0.86 to 0.00034. The relatively large number of iterations is one of the difficulties we encounter in case of
overdetermined parameter estimation models. Obviously, the area around an optimal solution is very flat
and makes it extremely difficult to approximate the true solution exactly within the required accuracy.
In our case, the KKT optimality value as reported by DFNLP, is less than 10−7 after 49 iterations with
residual value 0.00069 and less than 10−9 after 65 iterations with residual value 0.00051. We will never
know by sure how close this value is to the true solution, and have to expect further changes of model
parameter values if we would continue the process, which is numerically impossible in our case.
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p p0 p̂ σ̂ pl

Ds
M 0.02 0.0017 0.018 7

Dm
M 0.1 5.32 7.75 1

Ds
T 1.0 26.1 0.0044 2

Dm
T 8.0 9.22 4.48 4

P s 0.01 0.741 8.45 3
Pm 0.05 0.0051 0.0029 7

Vmax 30.0 8.02 19.7 7
T s 1.0 0.376 0.11 5
T m 1.0 0.53 0.041 6
Y0 324.0 318.8 1.98 7

Table 2: Parameter Identification
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Figures 1 to 4 show the corresponding plots of the experimental data and the fitting functions vs(t),
vm(t), ws(t), and wm(t). Concentration profiles of substrate and metabolite are found in Figures 5 and
6, where the time axis is extended to t = 400.

In Table 2, the starting values p0, the obtained final solution values p̂, and the standard deviations
σ̂ subject to an expected error of 1% of the measurements are reported. The last column, pl, shows the
priority levels as introduced in Section 5.2. Obviously, some parameters got extremely large confidence
intervals indicating that a identification of this parameter is not possible. Moreover, 15 pairs of parameters
got a correlation coefficient greater than 0.98. We conclude that in this specific situation, six parameters
Dm

M , Ds
T , Dm

T , Ps, T s, and T m seem to be less relevant then the others and cannot be identified as
accurately as needed despite of some small standard deviations.

After fixing these parameters and repeating the test run from the same starting values for the inden-
tifiable parameters, we get the results of Table 3. Their estimations are significantly better than those
obtained before, and the maximum correlation coefficient is 0.81. Now the least squares algorithm stops
after 73 iterations.

5.2 Step 2: Physical Plausibility Analysis: Steady-State and Mass Balance

By applying simple physical arguments, it is often possible to check in advance whether the mathematical
model violates some basic laws, for example mass balance or steady-state conditions. If a model fails to
pass these tests, it can be rejected immediately.
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p p0 p̂ σ̂
Ds

M 0.02 0.0017 0.000012
Pm 0.05 0.0051 0.00029

Vmax 30.0 8.02 0.036
Y0 324.0 318.8 1.65

Table 3: Parameter Identification after Priority Analysis

The underlying experiment is assumed to measure substrate and metabolic mass only within a rela-
tively short time interval of 30 min. Longer measurement times are not possible because of additional
chemical side effects. An important practical question is, whether the system achieves a reasonable and
interpretable steady-state condition, i.e., a constant substrate and metabolite distribution at both sides
of the two layers in equilibrium.

We insert the optimal parameters p̂ of Table 3 and perform a simulation, i.e., we integrate the system
equations from t = 0 to t = 400. The resulting function plots are shown in Figure 7 to 10. We observe that
the system reaches its steady-state where the substrate is completely transformed into the metabolite.
The initially given substrate mass permeates completely through both layers.

A further possibility to check the validity of the model, is to compute the mass balance

b(t) :=
1
Y0

⎛
⎝vs(t) + vm(t) + ws(t) + wm(t) + Fa

l∫
0

us(x, t)dx + Fa

l∫
0

um(x, t)dx − Y0

⎞
⎠ . (22)

The mass distribution over a time horizon of 400 min is shown in Figure 11. The error is in the order of
the discretization and numerical integration accuracy chosen.

5.3 Step 3: Optimum Experimental Design

The numerical results of the previous sections indicate that Ds
M , Pm, and Vmax should be considered

as model parameters to get estimated. Y0 is now considered as an experimental design parameter, since
the initial concentration at the donor can be predetermined in advance. In addition, we consider also
Va, the volume of the donor, and Fa, the surface of the membrane, as experimental design parameters.
The question is whether proceeding from the mathematical model, optimal values can be found without
requiring any further experimental data.
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q q0 q̂
Y0 300 1, 000
Fa 100 6, 211
Va 1, 000 89, 517

Table 4: Optimal Design Parameters

p p̂ σ̂ σ̂
(original) (optimum design)

Ds
M 1 0.0035 0.0028

Pm 1 0.098 0.036
Vmax 1 0.0019 0.0027

Table 5: Parameter Identification before and after Optimum Design

To avoid perturbing scaling effects, model and design variables are scaled to one based on the numerical
data achieved so far. Mixed partial derivatives are approximated by forward differences with a tolerance
of 0.1 and the A-criterion is applied, see Section 2.3 for details.

After 30 iterations, the code NLPQLP stops at the design parameters denoted by q̂ in Table 4. The
scaled A-criterion is reduced from 1.0 to 0.0027, where the stopping criterion is set to 10−10. Table 4
contains the initial design parameters q0 and the optimal ones q̂. Y0 hits its upper bound 1,000.

The standard deviations of the model functions are computed by numerical simulation at the initial
and the optimal parameter set by adding subsequently uniformly generated errors in the order of 1%,
and evaluating the confidence intervals, see Table 5. The model parameters p are scaled to one. It seems
that the larger the membrane surface, the donor volume, and the initial substrate concentration, the
smaller are the standard deviations. A general recommendation could be to design these items as big as
possible. A significant improvement of the estimate for the metabolite distribution coefficient Pm, the
most difficult parameter, is obtained.

The experimental design problem studied so far, uses a constant weight one for each measurement.
Now we are interested in the question whether it is possible to predict an optimal distribution of weights of
the given time horizon of 30 min. By applying the approach introduced in Section 2.3, we add the scaled
weights to the existing set of design parameters, and repeat the test run. We then get an optimization
problem consisting of 28 variables and an additional linear equality constraint to enforce that the sum
over all weights is one.

NLPQLP needs 47 iterations to reduce the scaled A-criterion from 1.0 to 0.014 subject to a termi-
nation accuracy of 10−10. The interesting observation is that only three weights are different from zero
corresponding to vm(10), ws(7), and wm(7) according to the number of model parameters, np = 3. Ob-
viously, these parameters are identifiable, since any measurements at these time values lead to an exact
fitting with zero residuals.

For illustration, we perform a simple experiment. We predetermine artificial experimental data by
hand for the three criteria, each at the given time position t = 7 or t = 10, respectively, namely y1 = 300
for vm(10), y2 = 50 for ws(7), and y3 = 100 for ws(7). The values are significantly different from the
simulated curves discussed so far, and are exactly approximated. The least squares code DFNLP needs
9 iterations to compute a perfect fit with residual less than 10−12.
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6 Conclusions

We present an approach to compute unknown parameters in a dynamical model consisting of one-
dimensional, time-dependent partial and coupled ordinary differential equations by a least squares data
fit. The numerical discretization is based on the method of lines and difference formulae for first and
second derivatives subject to the spatial variable. The resulting system of ordinary differential equations
is integrated by a standard solver, and the least squares optimization problem is solved iteratively by a
modified Gauss-Newton method.

A couple of practical tools are proposed to compute optimal designs, to analyze results of a data fitting
run based on confidence intervals, and to get significance levels for the estimated parameters. Of particular
interest is the possible reduction of experimental measurements to be retrieved, by weight optimization.
The feasibility of this approach and the robustness of the numerical implementation are evaluated by
a practical case study. The application model is outlined in detail, which is supposed to simulate the
transdermal diffusion of drugs. Partial differential equations describe diffusion of a substrate through
a metabolically active tissue, where generation of a metabolite is taken into account by the Michaelis-
Menten kinetics. The mass fluxes at donor and receiver sides are modeled by coupled ordinary differential
equations.

The transdermal diffusion problems serves as a typical case study to analyze a complex mathematical
dynamic model in a practical situation. We show how to check which parameters can be identified, which
not, and investigate steady-state and mass balance. The goal is to test the validity of our model by
numerical experiments, and to compute optimal experimental designs.

A priority analysis based on successive elimination of less significant model parameters reduces their
number from 9 to 3. The analysis is based on computing the absolutely largest coefficient of an eigenvector
belonging to the smallest eigenvalue of the inverse of the Fisher information matrix, i.e., the inverse of
the covariance matrix. A rigorous mathematical theory justifying this approach, is not known to the
author. However, all numerical tests performed so far, see also Schittkowski [32] for some more systematic
experiments, show its effectiveness.

Experimental design is a very well understood tool. Mixed second derivatives are required for com-
puting the gradients of the design criterion, the main numerical bottleneck for practical applications. It is
shown that a careful implementation based on a difference formula could lead to acceptable numerical re-
sults. But the stability of the solution still depends on a careful choice of the tolerance for approximating
derivatives. More numerical tests and analytical investigations are necessary to find out guidelines how
to choose the tolerance in advance in a proper way. Due to the complexity of the basic state equations,
analytical derivatives of solutions of differential equations are not available in our case.

By considering weight factors as experimental design parameters, a further hint for the identifiability
of the final three model parameters is obtained. It is shown that the total number of positive weights is
reduced to three and that the curvature of the fitting criteria is completely identified by these parameters.

Acknowledgment: The paper is dedicated to PD Dr. M. Wolf from Boehringer Ingelheim Pharma KG,
who provided the transdermal diffusion model, who motivated the author to do some research in this
area, who helped the author to understand practical issues of pharmaceutical laboratory work, and who
passed away too early.
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