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Abstract

In this paper we discuss a couple of situations, where algebraic equations are to
be attached to a system of one-dimensional partial differential equations. Besides
of models leading directly to algebraic equations because of the underlying practical
background, for example in case of steady-state equations, there are many others where
the specific mathematical structure requires a certain reformulation leading to time-
independent equations. To be able to apply our approach to a large class of real-life
problems, we have to take into account flux formulations, constraints, switching points,
different integration areas with transition conditions, and coupled ordinary differential
algebraic equations (DAEs), for example. The system of partial differential algebraic
equations (PDAEs) is discretized by the method of lines leading to a large system of
differential algebraic equations which can be solved by any available implicit integration
method. Standard difference formulas are applied to discretize first and second partial
derivatives, and upwind formulae are used for transport equations. Proceeding from
given experimental data, i.e., observation times and measurements, the minimum least
squares distance of measured data from a fitting criterion is computed, which depends
on the solution of the system of PDAEs. Parameters to be identified can be part of
the differential equations, initial, transition, or boundary conditions, coupled DAEs,
constraints, fitting criterion, etc. Also the switching points can become optimization
variables. The resulting least squares problem is solved by an adapted sequential
quadratic programming (SQP) algorithm which retains typical features of a classical
Gauss-Newton method by retaining robustness and fast convergence speed of SQP
methods. The mathematical structure of the identification problems is outlined in
detail, and we present a number of case studies to illustrate the different model classes
which can be treated by our approach.

Keywords: parameter estimation, data fitting, least squares optimization,partial differential
algebraic equations, method of lines
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1 Introduction

Parameter estimation or data fitting, respectively, is applied in practical situations, where
a mathematical model is available to simulate and predict the dynamical structure of the
system. The idea is compute unknown model parameters by minimizing the distance of a
fitting function from experimentally observed data.

In this paper, we consider one-dimensional partial differential algebraic equations (PDAEs)
with optional flux functions, coupled ordinary differential algebraic equations, arbitrary fit-
ting criteria, disjoint spatial integration areas, switching times, and dynamical constraints.
Despite of the restriction that only one-dimensional spatial variables are considered, the
mathematical model is fairly general and broad from the practical point of view. But even
if the underlying mathematical formulation requires a two- or three-dimensional simulation,
it is often reasonable to estimate first some unknown model parameters by a least squares
fit for a simplified one-dimensional variant.

Partial differential algebraic equations (PDAEs) are based on the same model structure
as one-dimensional, time-dependent partial differential equations. The only difference is that
additional algebraic equations are permitted as in the case of ordinary differential algebraic
equations (DAEs). We proceed from the general explicit formulation

∂ud

∂t
= Fd(p, u, ux, uxx, x, t) ,

0 = Fa(p, u, ux, uxx, x, t) ,

(1)

where x ∈ IR is the spatial variable with xL ≤ x ≤ xR, and t the time variable with bounds
of the form 0 ≤ t ≤ T . p ∈ IRn is an unknown parameter vector we would like to identify by
fitting experimental data.

The state variables are divided into nd so-called differential variables ud = (u1, . . .,
und

)T and na algebraic variables ua = (und+1, . . ., und+na)
T , where the number of algebraic

variables is identical to the number of algebraic equations summarized by the vector Fa. The
dynamical system (1) is also written in equivalent form

∂u1

∂t
= F1(p, u, ux, uxx, x, t) ,

· · ·
∂und

∂t
= Fnd

(p, u, ux, uxx, x, t) ,

0 = Fnd+1(p, u, ux, uxx, x, t) ,
· · ·

0 = Fnd+na(p, u, ux, uxx, x, t) ,

(2)

if we consider the individual coefficient functions F = (F1, . . . , Fnd+na)
T and u = (ud, ua) =

(u1, . . . , und+na)
T . We denote the solution of (2) by u(p, x, t), since it depends on the time

value t, the space value x, and the actual parameter p.
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Initial values and boundary conditions may depend on the parameter vector to be esti-
mated. Since the starting time is assumed to be zero, initial values have the form

u(p, x, 0) = u0(p, x) (3)

and are defined for all x ∈ [xL, xR]. For both end points xL and xR we allow Dirichlet or
Neumann boundary values

u(p, xL, t) = uL(p, t) ,

u(p, xR, t) = uR(p, t) ,

ux(p, xL, t) = ûL(p, t) ,

ux(p, xR, t) = ûR(p, t)

(4)

for 0 < t ≤ T , where T is the final integration time, for example the last experimental time
value. The availability of all boundary functions is of course not required. Their particular
choice depends on the structure of the PDAE model, for example whether second partial
derivatives exist on the right-hand side or not. A rule-of-thumb says that the number of
partial derivatives should be identical to the number of initial and boundary equations.

However, we must treat initial and boundary conditions with more care. We have to
guarantee that at least existing boundary conditions satisfy the algebraic equations, for
example

0 = Fa(p, u(p, xL, t), ux(p, xL, t), uxx(p, xL, t), xL, t) ,

0 = Fa(p, u(p, xR, t), ux(p, xR, t), uxx(p, xR, t), xR, t) ,
(5)

where u is the combined vector of all differential and algebraic state variables. If the initial
values

0 = Fa(p, u(p, x, 0), ux(p, x, 0), uxx(p, x, 0), x, 0) (6)

for the discretized algebraic equations are violated after inserting corresponding approxima-
tions for spatial derivatives, the corresponding system of nonlinear equations must be solved
numerically. In other words, consistent initial values can be computed automatically, where
given data serve as starting parameters for the nonlinear programming algorithm applied.

But even if we succeed in finding consistent initial values for (1) by hand, we have to take
into account that the spatial derivatives of the dynamical equation (6) are approximated
numerically by the method of lines and suitable difference formulae. The corresponding
discretized equations of the DAE system are in general not consistent, or, more precisely,
are satisfied only within the given discretization accuracy. Thus, we have to assume that the
resulting DAE is an index-1-system unless it is guaranteed that consistent initial values for
the discretized DAE are available, see for example Caracotsios and Stewart [8] for a similar
approach.

A complex practical application is a model for molten carbonate fuel cells with e few
second-order temperature equations and about 20 additional transportation equations, see
Heidebrecht and Sundmacher [24] or Pesch et el. [34]. Another application from chemical
engineering, the simulation model for an acetylene reactor, is given in form of a distributed
system and consists of one temperature and nine reaction equations, all of first order, see
Birk et al. [5].
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Next we proceed from r experimental data sets (tj, y
k
j ), j = 1, . . ., lt, k = 1, . . ., r, where

lt time values and l = ltr corresponding measurement values are defined. Then the objective
function to be minimized is

r∑
k=1

lt∑
j=1

(wk
j (hk(p, tj) − yk

j ))2 . (7)

The fitting criteria hk(p, t) depend now on so-called state variables, i.e., the solution of an
implicitly defined system of partial differential algebraic equations. wk

j are suitable weights
by which the influence of measurement yk

j on the optimal parameter set is influenced.
To indicate that the fitting criteria hk(p, t) depend on the solution of the dynamical

equation at the corresponding fitting point and its derivatives, where k denotes the index of
a measurement set, we use the notation

hk(p, t) = hk(p, u(p, xk, t), ux(p, xk, t), uxx(p, xk, t), t) . (8)

Each set of experimental data is assigned a spatial variable value xk ∈ [xL, xR], k = 1, . . .,
r, where r denotes the total number of measurement sets. Some or all of the xk-values may
coincide, if different measurement sets are available at the same local position. Since partial
differential equations are discretized by the method of lines, the fitting points xk are rounded
to the nearest line.

By defining now fi(p) := wk
j (hk(p, tj) − yk

j ) where the index i runs from 1 to l := rlt in
any order, we obtain the constrained least squares problem

p ∈ Rn :

min
l∑

i=1

fi(p)2

gj(p) = 0 , j = 1, ..., me ,
gj(p) ≥ 0 , j = me + 1, ..., m ,
pl ≤ p ≤ pu .

(9)

We assume that the parameter vector p is n-dimensional and that the nonlinear functions
by which (9) is defined, are continuously differentiable with respect to p, since all efficient
numerical algorithms are based more or less on the Gauss-Newton method and require first
derivatives. Upper and lower bounds are treated independently from the remaining con-
straints. The fitting criteria fi(p) are supposed to depend also on the solution of a system
of one-dimensional partial differential equations.

Possible extensions of the general formulation are discussed in Section 2 in more detail to
cover a broad domain of possible applications, for example flux functions, coupled ordinary
differential algebraic equations, arbitrary fitting criteria, disjoint spatial integration areas,
switching times, and dynamical constraints. Section 3 contains a brief summary of the
numerical procedures that are useful to discretize the partial differential algebraic equations
by the method of lines, to integrate the resulting system of ordinary differential algebraic
equations, and to solve the constrained least squares problem efficiently. Only some basic
features of the underlying ideas are presented. More details are found in the references and
especially in Schittkowski [50]. Some case studies are outlined in Section 4 to illustrate that
despite of the fixed model structure as shown above, we are able to solve also many other
identification problems by formulating suitable algebraic equations,
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1. distributed systems,

2. stationary systems,

3. higher order spatial derivatives,

4. general boundary conditions,

The purpose is to motivate the necessity for investigating algebraic partial differential equa-
tions and to show how special model classes are successfully treated as systems of PDAEs
after some straightforward transformations.

A subset of 43 PDAEs is listed in Section 5, which are part of a large database of 1,170
data fitting problems with name EASY-FIT and which can be downloaded from the home
page of the author,

http://www.klaus-schittkowski.de/

The software comes with data fitting software, which is based on the discretization techniques
outlined in this paper, and allows repeating the numerical test runs, see Schittkowski [49, 50].

2 Extensions of the Model Structure

Practical application models are often more complex and do not fit precisely into the general
model frame given by (1), (3), and (4). Some of them discussed in this section in more detail,
require also alternative discretization techniques and specialized solvers. But the goal is to
show that all of these additional options can be combined into one unified algorithm leading
to the same constrained least squares problem (9).

2.1 Flux Functions

Flux functions facilitate the definition of the right-hand side of a partial differential equa-
tion, and to allow the usage of special discretization formulae in situations where standard
symmetric formulas break down. An example are hyperbolic equations with non-continuous
boundary and initial conditions leading to the propagation of shocks through the integration
interval. A typical example for the first case is the Richards equation

ut =
1

c

∂

∂x
(k(ux − 1))

with

c = (n − 1)(θs − θr)(1 + un)1/n−2un−1 ,

k =
Ks(1 − un−1(1 + un)1/n−1)2

(1 + un)(1−1/n)/2

where the formulation of analytic derivatives by hand is cumbersome. On the other hand,
flux functions are required for example to integrate systems of hyperbolic equations of the
form

ut + fx(u) = 0 ,
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see Thomas [54] or Renardy and Rogers [41], for which a large variety of different discretiza-
tion schemes is available.

We suppose that a flux function f depends on p, u, ux, x, and t, i.e., f is of the form
f(p, u, ux, x, t). It is then possible to attach them and together with their first partial deriva-
tives to the right-hand side of an equation. Again we proceed from a system of nd differential
and na algebraic equations in explicit formulation (1), where the state variables consist of
nd differential variables ud and na algebraic variables ua, u = (ud, ua)

T . It is supposed
that f(p, u, ux, x, t) and fx(p, u, ux, x, t) are of the same dimension, and we get the extended
dynamical system

∂ud

∂t
= Fd(p, f(p, u, ux, x, t), fx(p, u, ux, x, t), u, ux, uxx, x, t) ,

0 = Fa(p, f(p, u, ux, x, t), fx(p, u, ux, x, t), u, ux, uxx, x, t) ,

(10)

where x ∈ IR is the spatial variable with xL ≤ x ≤ xR, and 0 < t ≤ T . Initial and boundary
conditions are the same as in (3) and (4).

2.2 Coupled Ordinary Differential Algebraic Equations

A particular advantage of applying the method of lines is the possibility of coupling additional
ordinary differential algebraic equations to the given partial ones easily. We proceed from
the general explicit formulation

∂ud

∂t
= Fd(p, f(p, u, ux, x, t), fx(p, u, ux, x, t), u, ux, uxx, u, ux, uxx, v, x, t) ,

0 = Fa(p, f(p, u, ux, x, t), fx(p, u, ux, x, t), u, ux, uxx, u, ux, uxx, v, x, t) ,

(11)

see (10), where x ∈ IR is the spatial variable with xL ≤ x ≤ xR, 0 < t ≤ T , and where
we add the state variable v ∈ IRnc of a system of ordinary differential algebraic equations.
Initial values and boundary conditions are the same as in the previous section, (3) and (4),

u(p, x, 0) = u0(p, x) (12)

to be satisfied for all x ∈ (xL, xR), and

u(p, xL, t) = uL(p, v, t) ,

u(p, xR, t) = uR(p, v, t) ,

ux(p, xL, t) = ûL(p, v, t) ,

ux(p, xR, t) = ûR(p, v, t)

(13)

for 0 < t ≤ T , where either Dirichlet or Neumann or any mixed boundary conditions must
be defined. These boundary conditions may depend on the coupled differential and algebraic
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variables, for example, if boundary conditions are given in the form of ordinary differential
equations or in implicit form.

By distinguishing between differential and algebraic variables, v = (vd, va)
T ∈ IRnc , we

proceed from a system of DAEs

∂v1

∂t
= G1(p, u(p, x1, t), ux(p, x1, t), uxx(p, x1, t), v, t) ,

· · ·
∂vndc

∂t
= Gndc

(p, u(p, xndc
, t), ux(p, xndc

, t), uxx(p, xndc
, t), v, t) ,

0 = Gndc+1(p, u(p, xndc+1, t), ux(p, xndc+1, t), uxx(p, xndc+1, t), v, t) ,
· · ·

0 = Gnc(p, u(p, xnc , t), ux(p, xnc , t), uxx(p, xnc , t), v, t) ,

(14)

where u(p, x, t) is the state variable of the partial differential equation. xj is any x-coordinate
value where the corresponding ordinary differential or algebraic equation is to be coupled to
the partial one, j = 1, . . ., nc. Some of these values may coincide. When discretizing the
system by the method of lines, they have to be rounded to the nearest neighboring line. Note
that the partial and the ordinary differential equations must be integrated simultaneously.

Also initial values
v(p, 0) = v0(p) (15)

may depend again on the parameters to be estimated. A solution of the coupled system
depends on the spatial variable x, the time variable t, the parameter vector p, and is therefore
written in the form v(p, t) and u(p, x, t).

To indicate that also the fitting criteria hk(p, t) depend on the solution of the differential
equation at the corresponding fitting point and its first and second spatial derivatives, we
use the notation

hk(p, t) = hk(p, u(p, xk, t), ux(p, xk, t), uxx(p, xk, t), v(p, t), t) , (16)

see (8). k denotes the index of a measurement set. Also fitting points xk are rounded to
their nearest line when discretizing the system.

Coupled ordinary differential equations can be used to define a fitting criterion, for exam-
ple if the flux into or out of a system is investigated. A practical case study is the transdermal
application of drugs which leads to four coupled ordinary differential equations, where the
corresponding state variables are measured, see Schittkowski [47].

Another reason is that they allow replacing Dirichlet or Neumann boundary conditions
by differential equations or general algebraic equations either at a boundary point or even
inside of the spatial integration area.

2.3 Integration Areas and Transition Conditions

We further extend the model structure to allow different integration intervals in the x-
direction. A possible application is the diffusion of a substrate through different media, where
we want to describe the transition from one area to the next by special conditions. Since
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these transition conditions may become non-continuous, we need a more general formulation
and have to adapt the discretization procedure.

The general model is defined by a system of nd one-dimensional partial differential equa-
tions and na algebraic equations in one or more spatial intervals, see also Schittkowski [46].
These intervals are given by the outer boundary values xL and xR that define the total inte-
gration interval for the space variable x, and optionally some additional internal transition
points xa

1, . . ., xa
ma−1. Thus, we get a sequence of ma + 1 boundary and transition points

xa
0 = xL < xa

1 < · · · < xa
ma−1 < xa

ma
= xR . (17)

For each integration interval, we have a system of partial differential equations

∂ui
d

∂t
= F i

d(p, f
i(p, ui, ui

x, x, t), f i
x(p, u

i, ui
x, x, t), ui, ui

x, u
i
xx, v, x, t) ,

0 = F i
a(p, f

i(p, ui, ui
x, x, t), f i

x(p, u
i, ui

x, x, t), ui, ui
x, u

i
xx, v, x, t) ,

(18)

where x ∈ IR is the spatial variable with xa
i−1 < x < xa

i for i = 1, . . ., ma, t ∈ IR the
time variable with 0 < t ≤ T , v ∈ IRnc the state variable of the coupled system of ordinary
differential algebraic equations, ui = (ui

d, u
i
a)

T ∈ IRnp the state variables consisting of the
partial differential variables ui

d ∈ IRnd and partial algebraic variables ui
a ∈ IRna , and p ∈ IRn

is the parameter vector to be identified by the data fitting algorithm.
Optionally, the right-hand side may also depend on a flux function f i(p, ui, ui

x, x, t), where
we omit for simplicity a possible dependency from coupled ordinary differential equations.
A solution depends on the spatial variable x, the time variable t, the parameter vector p, the
corresponding integration interval, and is therefore written in the form vi(p, t) and ui(p, x, t)
for i = 1, . . ., ma.

For both boundary points xL and xR we allow Dirichlet or Neumann conditions in more
general form

u1(p, xL, t) = uL(p, v(t), t) ,

una(p, xR, t) = uR(p, v(t), t) ,

u1
x(p, xL, t) = ûL(p, u1(p, xL, t), v(t), t) ,

una
x (p, xR, t) = ûR(p, una(p, xR, t), v(t), t) ,

(19)

0 < t ≤ T , to indicate that boundary information is also contained in coupled ordinary
differential equations and that boundary fluxes may depend also on the state variable at the
boundary. Again, we do not require the evaluation of all boundary functions. A user has to
adopt them carefully depending on the mathematical structure of the dynamical model.

Transition conditions between different integration areas must be defined in addition.
They are allowed at most at transition points and have the form

ui(p, xa
i , t) = cR

i (p, ui+1(p, xa
i , t), v(t), t) ,

ui+1(p, xa
i , t) = cL

i (p, ui(p, xa
i , t), v(t), t) ,

ui
x(p, x

a
i , t) = ĉR

i (p, ui+1(p, xa
i , t), u

i+1
x (p, xa

i , t), v(t), t) ,

ui+1
x (p, xa

i , t) = ĉL
i (p, ui(p, xa

i , t), u
i
x(p, x

a
i , t), v(t), t)

(20)
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with 0 < t ≤ ts, i = 1, . . ., ma − 1. A transition condition of the i-th area either in Dirichlet
or Neumann form depends on the time variable, the parameters to be estimated, and the
solution of the neighboring area. Again, the user may omit any of these functions, if a
transition condition does not exist at a given xa

i -value. More complex implicit boundary and
transition conditions can be defined in the form of coupled algebraic equations.

Since the starting time is assumed to be zero, initial values must have the form

ui(p, x, 0) = ui
0(p, x) , i = 1, . . . , ma (21)

and are defined for all x ∈
[
xa

i−1, x
a
i

]
, i = 1, . . ., ma. If initial values for algebraic variables

are not consistent, i.e., do not satisfy the algebraic equations of (18), we have to apply
Newton’s method for solving the corresponding system of nonlinear equations.

If the partial differential equations are to be coupled to ordinary differential algebraic
equations, we proceed from an additional DAE system of the form

v̇j = Gj(p, u
ij(p, xj, t), u

ij
x (p, xj, t), u

ij
xx(p, xj, t), v, t) (22)

for j = 1, . . ., ndc, and

0 = Gj(p, u
ij(p, xj, t), u

ij
x (p, xj, t), u

ij
xx(p, xj, t), v, t) (23)

for j = ndc + 1, . . ., nc, see (14). Coupling of ordinary differential equations is possible at
arbitrary points within the integration interval and the corresponding area is denoted by the
index ij. The spatial variable value xj, some or all of which may coincide, belongs to the
ij-th area, xj ∈ [xa

ij−1, x
a
ij
) or xj ∈ [xa

ma−1, x
a
ma

], respectively, j = 1, . . ., nc, and is called a
coupling point.

Coupling points are rounded to their nearest line when discretizing the system by the
method of lines. The right-hand side of the coupling equation may depend on the cor-
responding solution of the partial differential equation and its first and second derivative
subject to the space variable at the coupling point under consideration.

To indicate that the fitting criteria hk(p, t) also depend on the solution of the differential
equation at the corresponding fitting point, where k denotes the index of an experimental
data set, we use the notation

hk(p, t) = hk(p, u
ik(p, xk, t), u

ik
x (p, xk, t), u

ik
xx(p, xk, t), v(p, t), t) (24)

and insert hk into the data fitting function (16). The fitting criteria may depend on solution
at a given spatial variable value in an integration interval defined by the index ik. The
spatial variable xk belongs to the ik-th integration area,

xk ∈
[
xa

ik−1, x
a
ik

)
, xk ∈

[
xa

ma−1, x
a
ma

]
,

respectively, k = 1, . . ., r, where r denotes the total number of experimental data sets.
Fitting points are rounded to their nearest line when discretizing the system.

In principle, each integration area is treated as an individual boundary value problem
and is discretized separately by the method of lines. The transition functions are treated in
the same way as Dirichlet or Neumann boundary conditions, respectively.
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2.4 Switching Points

There are many practical situations where model equations change during the integration
over the time variable, and where corresponding initial values at the switching points must
be adopted. A typical example is a pharmacokinetic application with an initial infusion and
subsequent application of drug doses by injection. In this case, it is even possible that the
solution becomes non-continuous at a switching or break point, respectively. We consider
now the same model that was developed step-by-step in previous sections, a system of one-
dimensional partial differential algebraic equations with flux functions, coupled ordinary
differential algebraic equations, and different integration areas with transition conditions,
see (18). We suppose that nb break or switching points with

τ0 = 0 < τ1 < . . . < τnb
< τnb+1 = T (25)

are given, where T is the last experimental time value.
For the first time integration interval, the same initial, boundary, and transition values

are given as before, see (21), (15), (19), and (20), respectively. For all subsequent intervals,
however, the integration subject to the time variable is to be restarted at a switching point
and new function values can be provided that may depend now also on the solution of the
previous section. Initial values at a switching point are evaluated from

ui(p, x, τk) = bi
k(p, u

i
−(p, x, τk), v−(p, τk), x) ,

v(p, τk) = b̃(p, v−(p, τk))
(26)

for i = 1, . . ., ma and k = 1, . . ., nb, where ui
−(p, x, τk) and v−(p, τk) denote the solution of

the coupled PDAE system in the previous time interval at t = τk.
Since the right-hand side of the partial differential equation (18) and also the correspond-

ing boundary and transition functions depend on the time variable, they may change from
one interval to the next. Particularly non-continuous transitions at switching points are
allowed.

It is possible that break points become variables to be adapted during the optimization
process. However, there exists a very dangerous situation when a variable switching point
passes or approximates a measurement time value during an optimization run. If both
coincide and if there is a non-continuous transition, then the underlying model function is
no longer differentiable with respect to the parameters to be optimized. Possible reactions
of the least squares algorithm are slow final convergence rates or break downs because of
internal numerical difficulties. On the other hand, variable switching points are very valuable
when trying to model for example the input feed of chemical or biological processes given
by a bang-bang control function or any other one with variable break points.

2.5 Dynamical Constraints

It is often reasonable to define dynamical constraints, where the restriction functions depend
on the solution of the partial differential equation and its first and second spatial derivatives
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at predetermined time and spatial values, and the solution of coupled ordinary differential
algebraic equations,

gj(p) = gj(p, u
ij(p, xj, tkj

), uij
x (p, xj, tkj

), uij
xx(p, xj, tkj

), v(p, tkj
), tkj

) (27)

for j = me + 1, . . ., mr. Here the index ij denotes the corresponding integration area that
contains the spatial parameter xj rounded to its nearest line, and kj the corresponding ex-
perimental time where a restriction is to be formulated. Thus, constraints are evaluated only
at certain lines and experimental time values. If they are required also at some intermediate
points, one has to increase the number of lines or the number of experimental data with
zero weights. Only inequality constraints are considered, since equality constraints should
be declared in the form of algebraic equations.

Equation (27) is the discretized form of the dynamical constraints we have in mind. In
a more general context, our intention is to limit certain functions depending on the state
variable for all time and/or spatial variable values,

gj(p, u(p, x, t), ux(p, x, t), uxx(p, x, t), v(p, t), x, t) ≥ 0 (28)

or
gj(p, u

ij(p, xj, t), u
ij
x (p, xj, t), u

ij
xx(p, xj, t), v(p, t), t) ≥ 0 (29)

or
gj(p, u(p, x, tj), ux(p, x, tj), uxx(p, x, tj), v(p, tj), x) ≥ 0 , (30)

respectively, for j = me + 1, . . ., mr, x ∈ (xL, xR), and t ≥ 0. All these constraints can be
mixed with time-independent parameter constraints.

3 Numerical Methods

A widely used idea is to transform one-dimensional partial differential equations into a system
of ordinary differential algebraic equations by discretizing the model functions subject to the
spatial variable x. This approach is known as the numerical method of lines, see for example
Schiesser [42]. For the i-th integration interval of the spatial variable, we define a uniform
grid and get a discretization of the whole space interval from xL to xR. To approximate the
first and second partial derivatives of u(p, x, t) subject to the spatial variable at a given point
xk, k = 1, . . ., ng, several different alternatives can be implemented, see Schittkowski [48, 50]
for more details.

In this section, several difference schemes are considered for approximating first deriva-
tives, see for example Smith [53] for a deeper treatment. Second derivatives are computed
either by successive application of a first-order scheme, or directly by a special difference
scheme for second derivatives. We assume that the spatial variable x is again discretized as
outlined in the previous section, ui(t) = u(xi, t) for i = 1, . . ., n, where

xi = xL +
i − 1

n − 1
(xR − xL) .

In case of algebraic differential equations, boundary conditions have to satisfy the alge-
braic equations. Consistent initial values are computed internally, where some data must
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be given to serve as starting parameters for the nonlinear programming algorithm. Conse-
quently, we allow only index-1-systems unless it is guaranteed, that consistent initial values
for the discretized DAE are available.

It is possible that the right-hand side of a PDAE becomes non-continuous subject to
integration time. Thus, it is necessary to supply time values and corresponding initial values
depending on the solution of the previous interval, where the integration of the DAE is
to be restarted with initial tolerances, for example with the initially given stepsize. The
integration in the proceeding interval is stopped at the time value given minus a relative
error in the order of the machine precision. Break or switching points are either constant or
optimization variables to be adapted by the optimization code.

It can be shown that the resulting large system of ordinary differential equations becomes
stiff in some situations, when discretization accuracy increases. Thus, the usage of implicit
solvers is recommended. Since the Jacobian of the discretized right-hand side has a band
structure, it is essential that the selected method is capable to exploit sparsity efficiently.

To simplify the notation, we neglect any dependencies on an optimization parameter p
as long as we discuss the discretization methods for systems of PDAEs.

3.1 Second-Order Formulae for First Derivatives

A very simple approach is to approximate first derivatives ux(x, t) by a second-order formula.
Using the discretized values ui−1(t), ui(t) and ui+1(t) defined on a uniform grid, we get the
difference formula

ux(xi, t) � 1

2h

(
ui+1(t) − ui−1(t)

)
(31)

with h = 1/(n− 1) and i = 2, . . ., n− 1. The formula must be adapted at the left boundary
of the integration area. Using u1(t), u2(t), and u3(t), we obtain

ux(x1, t) � 1

2h

(
− 3u1(t) + 4u2(t) − u3(t)

)
. (32)

By a symmetric formula, the derivatives at the right boundary are approximated.

3.2 Fourth-Order Formulae for First Derivatives

To improve the approximation order, we can also use five successive grid points ui−2(t),
ui−1(t), ui(t), ui+1(t), and ui+2(t) for approximating the first derivative ux(xi, t). A straight-
forward analysis shows that a fourth-order formula is given by

ux(xi, t) � 1

4!h

(
2ui−2(t) − 16ui−1(t) + 16ui+1(t) − 2ui+2(t)

)
(33)

for i = 3, . . ., n − 2, see Schiesser [42]. The corresponding approximations at the left
boundary point are

ux(x1, t) � 1

4!h

(
− 50u1(t) + 96u2(t) − 72u3(t) + 32u4(t) − 6u5(t)

)
,

ux(x2, t) � 1

4!h

(
− 6u1(t) − 20u2(t) + 36u3(t) − 12u4(t) + 2u5(t)

)
,

(34)
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and we get similar formulae for the right boundary point. All these formulae are of fourth-
order and the approximation of second derivatives uxx(x, t) can be computed by recursive
application of formulae (33) and (34).

3.3 Fourth-Order Formulae for Second Derivatives

Alternatively, it is also possible to approximate second derivatives directly, for example by
the five-point-difference formula

uxx(xi, t) � 1

4!h2

(
− 2ui−2(t) + 32ui−1(t) − 60ui(t) + 32ui+1(t) − 2ui+2(t)

)
(35)

for i = 3, . . ., n − 2. Corresponding approximation at the left boundary is

uxx(x2, t) � 1

4!h2

(
20u1(t) − 30u2(t) − 8u3(t) + 28u4(t) − 12u5(t)

+2u6(t)
)

.
(36)

Depending on the type of boundary condition, we use either the formulae

uxx(x1, t) � 1

4!h2

(−415
3

u1(t) + 192u2(t) − 72u3(t) + 64
3
u4(t) − 3u5(t)

−100ûL(t)
) (37)

in the case of a Neumann boundary condition or

uxx(x1, t) � 1

4!h2

(
90uL(t) − 308u2(t) + 428u3(t) − 312u4(t)

+122u5(t) − 20u6(t)
) (38)

in the case of a Dirichlet boundary condition. Again similar formulae are found vice versa
at the right boundary. For a more detailed outline of difference formulae, see Schiesser [42].

3.4 The First-Order Upwind Scheme

Now we suppose that the formulae discussed in the previous sections fail or show an irregular
behavior. This situation arises, in particular, if initial shocks at the boundary propagate
through the interior of the integration area.

For simplicity, we assume that there is only one scalar first-order equation of the form

ut + fx(u) = 0 (39)

with a flux function f(u) together with suitable initial conditions u(x, 0) = u0(x) and left
Dirichlet boundary condition u(xL, t) = uL(t). The above formulation is usually derived
from conservation or transportation laws.
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The above equation is approximated in the form

u̇i +
1

h
(Fi+1/2 − Fi−1/2) = 0 ,

where Fi+1/2 is supposed to be an integral of fx(u) at midpoint xi+1/2 = 0.5(xi+1 + xi) for
i = 1, . . ., n − 1. In the following, we will discuss some of the most simple formulae for
evaluating Fi+1/2 by shock-capturing schemes. More of the classical diffusive and dispersive
schemes and the one-parameter family of TVD schemes are found in Chakravarthy and
Osher [9, 10], or Yang [59], respectively, see also Schittkowski [50].

The interface flux Fi+1/2 is now defined by

Fi+1/2 =
1

2
(fi+1 + fi) − 1

2
|ai+1/2|�i+1/2 , (40)

where �i+1/2 = ui+1 − ui. Then a wave speed ai+1/2 is computed from

ai+1/2 =

⎧⎪⎨
⎪⎩

(fi+1 − fi)/�i+1/2 , if �i+1/2 �= 0 ,

(fi)u , otherwise ,
(41)

also denoted the Roe speed, and can be interpreted as a measure for the wind direction.
Equation (40) does not satisfy the so-called entropy condition, see Chakravarthy et al. [9]
and Yee [60] for details, |ai+1/2| is often replaced by

ϕ(ai+1/2) = max(|ai+1/2|, δ) (42)

with a small positive number δ.
Particular upwind formulae are obtained if it is known that ai+1/2 > 0 and ai−1/2 > 0,

or, alternatively, if ai+1/2 < 0 and ai−1/2 < 0. In the first case, we get Fi+1/2 = fi and
Fi−1/2 = fi−1, leading to

u̇i +
1

h
(fi − fi−1) = 0 ,

in the second

u̇i +
1

h
(fi+1 − fi) = 0 .

However, if a differential equation is not given in hyperbolic form (39), we have still the
possibility to approximate ux directly by upwind formulae, i.e., either in the form

ux(xi, t) � 1

h

(
ui(t) − ui−1(t)

)
(43)

or

ux(xi, t) � 1

h

(
ui+1(t) − ui(t)

)
, (44)

respectively.
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3.5 Solving Systems of Ordinary Differential Algebraic Equations

We assume now that the system of differential algebraic equations obtained after a suitable
discretization of the PDAE, is explicitly given in the general form

ẏ1 = F1(y, z, t) , y1(0) = y0
1 ,

· · ·
ẏs1 = Fs1(y, z, t) , ys1(0) = y0

s1
,

0 = G1(y, z, t) , z1(0) = z0
1 ,

· · ·
0 = Gs2(y, z, t) , zs2(0) = z0

s2
.

(45)

We are looking for a simultaneous solution given by the differential variables y(t) and the
algebraic variables z(t) at time t. Moreover, let y0 and z0 be given initial values. Without
loss of generality, we assume that the initial time from where the integration is to be started,
is zero. s1 is the number of differential equations or differential state variables, respectively,
and s2 the number of algebraic equations or algebraic state variables of the DAE (45).

We have to consider in more detail the question, how to treat the algebraic equations
G(y, z, t) = 0, where G(y, z, t) := (G1(y, z, t), . . . , Gs2(y, z, t))T . Obviously, we should not
expect that the algebraic variables z can be eliminated directly from these equations, unless
we know that the matrix ∇zG(y, z, t) possesses full rank. Then the above system of s2

equations and s2 unknowns z is solvable. We could compute a solution z(y, t) and insert it
into the remaining differential equations to get

ẏ1 = F1(y, z(y, t), t) , y1(0) = y0
1 ,

· · ·
ẏs1 = Fs1(y, z(y, t), t) , ys1(0) = y0

s1
.

(46)

If, however, the computation of z(y, t) is not possible in analytical form or if we want to avoid
time-consuming iterative algorithms, there is still another way to handle algebraic equations.
Since G(y, z, t) = 0 is to be valid for all t ≥ 0, we differentiate the equation subject to t and
get an additional implicit ordinary differential equation

∇yG(y, z, t)T ẏ + ∇zG(y, z, t)T ż +
∂

∂t
G(y, z, t) = 0

or an equivalent explicit one

ż = −∇zG(y, z, t)−T (∇yG(y, z, t)T F (y, z, t) +
∂

∂t
G(y, z, t)) . (47)

Together with (46) we get a system of ordinary differential equations that can be solved
by any available algorithm. The initial values z0 should be chosen so that the algebraic
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constraint (45) is satisfied at t = 0. Since we need one differentiation to transform the DAE
into an ODE, we say that the differential algebraic equation has index 1.

If coupled algebraic variables violate the algebraic equations after inserting initial con-
ditions (15) and a suitable discretization of the partial derivatives ux and uxx, Newton’s
method can be applied to compute consistent initial values. The equations are added to the
algebraic partial differential equations and the whole system of nonlinear equations must be
solved simultaneously.

I practice, it is possible to apply special implicit solvers which are able to directly take al-
gebraic equations into account. One example is the implicit Runge-Kutta method of Radau-
type, confer Hairer and Wanner [22]. The corresponding code is available under the name
RADAU5. Another alternative is the usage of the code DASSL of Petzold [35].

3.6 Solving Constrained Least Squares Problems

Finally, the resulting least squares problem (9) can be solved by any of the available standard
solvers, see for example Dennis et al. [14, 15], Gill et al. [18], or Schittkowski [44]. The
algorithms discussed in these references, are based on the Gauss-Newton method and require
first derivatives of the fitting criteria subject to the parameters to be estimated.

The goal is to minimize the sum of squares of distances of a certain model function from
experimental measurement values. However, we are not able to exploit this specific structure
mathematically. Instead, we write the parameter estimation problem in the form of a least
squares problem, where a sum of squared nonlinear functions is to be minimized,

min 1
2

∑l
i=1 fi(p)2

p ∈ IRn .
(48)

These problems possess a long history in mathematical programming and are extremely im-
portant in practice, particularly in nonlinear data fitting or maximum likelihood estimation.
In consequence, a large number of mathematical algorithms is available for solving (48).

To understand their basic features, we introduce the notation

F (p) = (f1(p), . . . , fl(p))T

for the objective function vector, and let f(p) = 1
2

∑l
i=1 fi(p)2. Then

∇f(p) = ∇F (p)F (p) (49)

defines the Jacobian of the objective function with ∇F (p) = (∇f1(p), . . . ,∇fl(p)). If we
assume now that all functions f1, . . ., fl are twice continuously differentiable, we get the
Hessian matrix of f

∇2f(p) = ∇F (p)∇F (p)T + B(p) , (50)

where

B(p) =
l∑

i=1

fi(p)∇2fi(p) . (51)
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Proceeding from a given iterate pk, Newton’s method can be applied to (48) to get a search
direction dk ∈ IRn by solving the linear system ∇2f(pk)d + ∇f(pk) = 0 or, alternatively,

∇F (pk)∇F (pk)
T d + B(pk)d + ∇F (pk)F (pk) = 0 . (52)

Assume that F (p�) = 0 at an optimal solution p�. Then we neglect matrix B(pk) and
(52) defines the so-called normal equations of the linear least squares problem

min ‖∇F (pk)
T d + F (pk)‖

d ∈ IRn .
(53)

A new iterate is obtained by pk+1 = pk + αkdk, where dk is a solution of (53) and where αk

denotes a suitable steplength parameter. It is obvious that a quadratic convergence rate is
achieved when starting sufficiently close to an optimal solution. The above calculation of a
search direction is known as the Gauss-Newton method and represents the traditional way
to solve nonlinear least squares problems, see Björck [6] for more details.

However, the assumptions guaranteeing convergence of Gauss-Newton methods are very
strong and cannot be satisfied in real situations. We have to expect difficulties in case of
non-zero residuals, rank-deficient Jacobian matrices, non-continuous derivatives, and starting
points far away from a solution. Numerous modifications have been proposed in the past, for
example the Levenberg-Marquardt algorithm, see Levenberg [27] and Marquardt [32], where
the key idea is to replace the Hessian in (52) by a multiple of the identity matrix, say λkI,
with a suitable positive factor λk. For further reviews see Gill, Murray and Wright [19] or
Ramsin and Wedin [39]. Lindström [29] proposed a combination of a Gauss-Newton and a
Newton method by using a certain subspace minimization technique.

Another possibility is to apply a well-known sequential quadratic programming (SQP)
method, which are widely used in nonlinear programming applications. By transforming
the original problem into a general nonlinear programming problem in a special way, typical
features of a Gauss-Newton and quasi-Newton least squares method are retained, see Schitt-
kowski [45] for details. A particular advantage is that additional constraints are easily taken
into account. The resulting optimization problem is solved by any available SQP code, for
example by NLPQL of Schittkowski [44, 52].

4 Case Studies

The efficient implementation of a PDAE model and the integration within an identification
environment is time-consuming. Thus, one would like to have the possibility to solve also a
wider class of problems by the same code although knowing that special purpose methods
are available and often perform much better. We present a few situations, which can be
transformed into or considered as a system of one-dimensional PDAEs. Only the underlying
model equations are investigated. Identifiers of typical examples to find more details, are
shown in brackets. Corresponding data, fitting criteria, references etc. of the corresponding
parameter estimation problems are found in Table 1 and can be downloaded from the home
page of the author, see Section 5 for details. To simplify the notation, we omit the parameter
variable p
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4.1 Distributed Systems (ACETYL T, ACETYL Z)

Partial differential equations of order one are sometimes called distributed parameter sys-
tems, especially in chemical engineering. A typical situation is described by

ut = F1(u, v, x, t) ,

vx = F2(u, v, x, t)

with initial values u(x, 0) = u0(x) , v(0, t) = v0(t) are transformed into the PDAEs

ut = F1(u, v, x, t) ,

0 = vx − F2(u, v, x, t)

or

vx = F2(u, v, x, t) ,

0 = ux − F1(u, v, x, t) ,

respectively. Distributed systems often arise in chemical engineering, see for example the
acetylene reactor discussed by Birk et al. [5] in more detail.

4.2 Stationary Systems (2ND DIR1, 2ND DIR2, CAPILL)

If there are no time-derivatives, we get a steady-state or stationary system of the form

F (u, ux, uxx, x, t) = 0 ,

which is identical to an implicit system of second order ordinary differential equations. By
defining a zero or a sufficiently small time integration interval, the solver is stopped immedi-
ately after computing consistent initial values. Since we have to define additional boundary
conditions, we consider this situation also as a boundary-value problem. The drawback is,
that the spatial stepsize is fixed and that the discretization accuracy is at most four when
applying the approximation schemes of the previous section.

4.3 Higher Order Spatial Derivatives (ELA TUBE, UNI BEAM,
KDV)

If we assume that our underlying mathematical model allows the solution of partial differ-
ential equations at most of order two, we can nevertheless solve higher order equations by
taking algebraic equations into account. A typical example is a fourth order equation, say

ut = F (u, uxxxx, x, t) ,

transformed into a second-order equation by introducing an additional variable w,

ut = F (u, wxx, x, t) ,

0 = w − uxx .

Boundary conditions must be selected very carefully to guarantee unique solutions.
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4.4 General Boundary Conditions (HEAT NLD, HEAT NLC)

For simplicity, we consider a system of partial differential equations without algebraic ones,

ut = f(u, ux, uxx, x, t) ,

where x ∈ [xL, xR]. Instead of Dirichlet or Neumann boundary conditions (4), we suppose
that there are implicitly defined equations of the form

hL(u(xL, t), ux(xL, t), t) = 0 , hR(u(xR, t), ux(xR, t), t) = 0 ,

also called conditions of Stefan-Boltzmann type. These equations are added to the partial
ones in form of a system of DAEs without specifying additional explicit boundary values.
Initial consistent values are computed by Newton’s method. Instead of inserting xL or xR,
any other spatial values could be used. They must be rounded to the nearest line on order
to couple the corresponding equation.

5 Software and Test Examples

We offer the possibility to test the PDAE models of the previous section, to try alternative
solution and discretization methods, or to change scaling parameters and solution tolerances.
The corresponding interactive system is called EASY-FIT, see Schittkowski [49, 50], and can
be downloaded through the URL

http://www.uni-bayreuth.de/departments/math/~kschittkowski/

easy_fit_demo.htm

The discretization schemes, equation solvers and least squares algorithms of Section 3 are
implemented, among a number of additional techniques for solving data fitting problems in
dynamical systems. EASY-FIT consists of a database for model data, experimental data,
and results and of two executable files containing the numerical algorithms

MODFIT parameter estimation in explicit functions, steady state sys-
tems, Laplace transforms, ordinary differential equations, and
differential algebraic equations,

PDEFIT parameter estimation in one-dimensional time-dependent par-
tial differential equations and partial differential algebraic
equations.

Moreover, EASY-FIT comes with a set of 1,170 test examples, among which are 43
PDAEs. Nonlinear functions are defined by the modelling language PCOMP, see Dobmann
et al. [16] or Schittkowski [51]. A few characteristic data and the application background
of these test problems are listed in Table 1. Besides problem name and some figures char-
acterizing problem size, we show some references in the column headed by ref, from where
further details can be retrieved. Not listed are the number of integration areas, switching
times, and structure of the boundary conditions. There are no equality constraints.
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6 Conclusions

We show an approach to compute unknown parameters in a dynamical model consisting of
partial differential algebraic equations by a least squares data fit. The dynamical equations
are discretized by the method of lines leading to large system of DAEs. Ordinary differential
equations and least squares problems can be solved by available standard codes.

The intention of the paper is to present a review on some techniques that are routinely
used to estimate data in dynamical systems. The model structure is very flexible and covers
a broad and realistic domain. Some real life applications are addressed, which reflect typical
situations in industry and academia. The complexity of practical mathematical models is
illustrated and numerical results are included. They show that unknown parameters of
realistic dynamical systems can be estimated more or less routinely by available standard
algorithms.
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