
Algorithm 746: New Features of PCOMP, a
Fortran Code for Automatic Differentiation

Michael Liepelt and Klaus Schittkowski†

April 18, 2014

Abstract

The software system PCOMP uses automatic differentiation to
calculate derivatives of functions that are defined by the user in a
modeling language similar to Fortran. This symbolical representa-
tion is converted into an intermediate code, which can be interpreted
to calculate function and derivative values at run-time within ma-
chine accuracy. Furthermore, it is possible to generate Fortran code
for function and gradient evaluation, which has to be compiled and
linked separately. The first version of PCOMP was introduced in Dob-
mann et al. [2]. In this paper, we describe a series of extensions and
additional features that have been implemented in the meantime.

1 Introduction

Let f(x) be a real valued differentiable function defined for x ∈ R
n. By

automatic differentiation we understand the numerical computation of the
derivative value ∇f(x) at a given point x without using approximation tech-
niques or explicit formulas for the derivatives. Automatic differentiation has
become an important tool for numerical algorithms that require derivatives in
areas such as nonlinear programming, optimal control, parameter estimation,
or differential equations.

It is beyond the scope of this paper to give a decisive description of the
underlying forward and backward accumulation methods and so we assume
that the reader is already familiar with Dobmann et al. [2]. For an expla-
nation of the theoretical background, we refer to Griewank [4]. PCOMP is a

†Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany

1



collection of Fortran subroutines that implement both approaches, see Dob-
mann et al. [2] for details. PCOMP uses a special modeling language similar
to Fortran for the declaration of arbitrary nonlinear functions. After pars-
ing the input file and generating an intermediate code, function, gradient,
and Hessian values can be directly evaluated by special subroutines called
from a user program. On the other hand, it is possible to generate Fortran
code for function and gradient evaluation that has to be compiled and linked
separately.

Meanwhile there exists a large variety of alternative approaches especially
with the goal of differentiating Fortran or C programs, see Juedes [6] for an
overview, or Griewank et al. [5] for the description of an implementation that
uses operator overloading in C++.

The new PCOMP is upwards compatible with the 1995 version, that is,
any PCOMP program written for the 1995 version may be run with the new
version. The extensions that are to be outlined in detail are as follows:

• more flexible identifier names

• interpolation functions (piecewise constant, piecewise linear, splines)

• macros for groups of PCOMP statements

• index variables, e.g., for the implementation of loops

• GOTO statements

• evaluation of gradients w.r.t. arbitrary subsets of variables

• second derivatives in forward mode

• additional error messages, especially for run-time execution

Moreover, a few bugs have been fixed and PCOMP has been tested on
a multitude of different Fortran compilers. As part of programs for param-
eter estimation in systems of algebraic equations, in ordinary differential
equations, in differential algebraic equations, and in time-dependent one-
dimensional partial differential equations, PCOMP is in permanent use in
many different disciplines, for instance pharmaceutics, chemical engineering,
mechanical engineering, or geology, see Schittkowski [7, 8, 11, 9, 10].

2



2 New Language Elements

2.1 Identifiers

In order to facilitate the problem formulation, the nomenclature of Fortran 77
has been extended and identifiers for variables or functions may now contain
underscores and may consist of up to 20 characters.

2.2 Index Variables

The concept of index variables already exists in the 1995 version of PCOMP;
they are used in the definition of vectors and matrices and in SUM and
PROD statements. For example, in the following statement to compute the
scalar product of two vectors

F = SUM(A(I)*X(I), I IN INDEX)

the variable I is implicitly declared as an index variable.
In order to make the structure of a PCOMP program more consistent,

these index variables can also be explicitly declared in a new program block
called INDEX, for instance:

* INDEX

I, J

L

Especially together with the enhanced control structures, it is sensible to
allow for assignments to these variables. If we assume that A is declared as
an integer array and that F and G are scalar and vector valued functions,
respectively, the following statements show some typical applications:

I = 1+2*4-3

I = A(1)

F = A(I+2)+I*2.0

F = SUM(A(M-I), M IN INDEX)

F = I

F = G(I)

Since these index variables are primarily used as indices for vectors and
matrices, it is quite obvious that they should only take integer values. Thus
the following statements are not permitted, if we assume that B is declared
as a real array:

3



I = 1.0

I = 4/2

I = B(3)

Because of the special role of index variables, we do not allow these as-
signments to avoid a misleading usage. Note also, that although PCOMP

distinguishes between integer and real constants, integer variables do not
exist.

2.3 Interpolation Functions

A new feature of the 1999 version of PCOMP is the possibility of interpolating
user defined data, using either a piecewise constant, piecewise linear, or a
cubic spline function. Given n pairs of real values (t1, y1), . . . , (tn, yn), we
are looking for a nonlinear function interpolating these data.

In the first case, we define a piecewise constant interpolation by

c(t) :=

⎧⎪⎨
⎪⎩
0, if t < t1,

yi, if ti ≤ t < ti+1 for i = 1, . . . , n− 1,

yn, if tn ≤ t.

A continuous piecewise linear interpolation function is given by

l(t) :=

⎧⎪⎨
⎪⎩
y1, if t < t1,

yi +
t−ti

ti+1−ti
(yi+1 − yi), if ti ≤ t < ti+1 for i = 1, . . . , n− 1,

yn, if tn ≤ t,

and a piecewise cubic spline is given by

s(t) :=

{
p(t; t1, t2, t3, t4, y1, y2, y3, y4), if t < t4,

s̄(t; t4, . . . , tn, y4, . . . , yn,
d
dt
p(t4; . . .), 0), if t4 ≤ t,

where p(t; t1, t2, t3, t4, y1, y2, y3, y4) is a cubic polynomial with

p(ti; t1, t2, t3, t4, y1, y2, y3, y4) = yi, i = 1, . . . , 4,

and s̄(t; t̄1, . . . , t̄m, ȳ1, . . . , ȳm, ȳ
′
1, ȳ

′
m) is a cubic spline function interpolating

(t̄1, ȳ1), . . ., (t̄m, ȳm) subject to boundary conditions

d

dt
s̄(t̄i; t̄1, . . . , t̄m, ȳ1, . . . , ȳm, ȳ

′
1, ȳ

′
m) = ȳ′i, i = 1 and i = m.

4



It is essential to understand that the constant and spline interpolation
functions are not symmetric. As noted before, a very typical class of applica-
tion problems consists of dynamic systems, say ordinary or partial differential
equations, where the initial value is set to 0 without loss of generality, leading
to a non-symmetric domain. In these cases, derivatives of the right-hand side
of the differential equations and the initial conditions are required for two
reasons: First the Jacobian of the right-hand side w.r.t. the state variables
is needed for applying implicit integration routines, in case of stiff systems or
additional algebraic equations. Secondly, dynamic systems are often embed-
ded in optimization problems, for example in data fitting or optimal control
applications. Thus one has to compute derivatives of the solution w.r.t.
certain design parameters, for example by integrating the sensitivity or vari-
ational equations, respectively, or by any related technique. Even worser, if
we integrate the resulting system by an implicit method, we have to compute
also second mixed partial derivatives w.r.t. state and design variables.

Moreover interpolated data are often based on experiments that reach a
steady state, that is, a constant value. Thus a zero derivative is chosen at the
right end point for spline interpolation to facilitate the input of interpolated
steady-state data. On the other hand, any other boundary conditions can be
enforced by adding artificial interpolation data.

To give an example, we assume that we want to interpolate the nonlinear
function f(t) given by the discrete values f(ti) = yi from Table 2.1, using
the different techniques mentioned above.

i ti yi

1 0.0 0.00
2 1.0 4.91
3 2.0 4.43
4 3.0 3.57
5 4.0 2.80
6 5.0 2.19
7 6.0 1.73
8 7.0 1.39
9 8.0 1.16
10 9.0 1.04
11 10.0 1.00

Table 2.1: Interpolation data

Interpolation functions are defined by a program block starting with the

5



keyword CONINT for piecewise constant functions, LININT for piecewise linear
functions, or SPLINE for piecewise cubic splines, followed by the name of the
function. The numerical values of the break points and the function values are
given on the subsequent lines, using any standard format starting at column 7
or later. Using piecewise constant approximations, we get for our example:

* CONINT F

0.0 0.00

1.0 4.91

2.0 4.43

3.0 3.57

4.0 2.80

5.0 2.19

6.0 1.73

7.0 1.39

8.0 1.16

9.0 1.04

10.0 1.00

Within a function definition block, the interpolation functions are treated
as intrinsic Fortran functions, that is, they have to contain a variable or
constant as a parameter. If we assume that T has previously been declared
as a variable, a valid statement could look like

* FUNCTION KT

TEMP = F(T) + 273

KT = K0*EXP(E/(R*TEMP))

The resulting approximations for piecewise constant functions, piecewise
linear functions, or piecewise cubic spline functions are depicted in Figures
2.1–2.3. Whereas the cubic spline approximation is twice differentiable on
the whole interval, the other two approximations are not differentiable at the
break points and PCOMP uses the right-hand sided derivatives instead.

2.4 Control Statements

Using GOTO and corresponding CONTINUE statements is another possibility to
control the execution of a program. The syntax of these statements is

GOTO 〈label〉
and

〈label〉 CONTINUE

6



0 2 4 6 8 10

0

1

2

3

4

5

Figure 2.1: Piecewise constant interpolation

where 〈label〉 has to be a number between 1 and 9999. Since PCOMP uses
labels in the Fortran code that is generated in reverse accumulation mode,
the user defined labels must be between 5000 and 9999 in this case to avoid
unnecessary clashes. The 〈label〉 part of the CONTINUE statement has to be
located between columns 2 and 5 of an input line. Together with an index
variable, the GOTO statement can also be used to implement DO loops, which
are not yet available in PCOMP:

I = 1

S = 0.0

6000 CONTINUE

S = S+A(I)*B(I)

I = I+1

IF (I .LE. N) THEN

GOTO 6000

ENDIF

However, it is recommended to avoid GOTO statements whenever possible,
and to replace them by SUM and PROD statements, if applicable. If not im-
plemented very carefully, one has to be afraid that a function to be defined
becomes non-differentiable.

2.5 Macros

PCOMP does not allow the declaration of subroutines. However, it is now

7



0 2 4 6 8 10

0

1

2

3

4

5

Figure 2.2: Piecewise linear interpolation

possible to define macros, that is, arbitrary sequences of PCOMP statements
that define an auxiliary variable to be inserted into the beginning of subse-
quent function declaration blocks. Macros are identified by a name that can
be used in any right-hand side of an assignment statement,

* MACRO 〈identifier〉

followed by a group of PCOMP statements that assign a numerical value to
the given identifier. This group of statements is inserted into the source code
block, that contains the macro name. Macros have no arguments, but they
may access all variables, constants, or functions that have been declared up
to their first usage. Any values assigned to local variables within a macro,
are also available outside in the corresponding function block.

If we assume that X is a variable and we want to define a macro that
computes the square of X, we would write something like

* MACRO SQRX

SQRX = X*X

Now it is possible to replace each occurence of the term X*X with an
invocation of the macro that we have just defined, for example

F = SQRX-5.2

It should be noted that empty lines and all lines after the final END state-
ment are ignored by PCOMP.

8



0 2 4 6 8 10

0

1

2

3

4

5

Figure 2.3: Piecewise cubic spline interpolation

3 Derivatives w.r.t. Subsets of the Variables

In the previous version of PCOMP, derivatives are always evaluated for the
full set of all declared variables. However, there are situations where we need
Jacobians or Hessians only with respect to a certain subset of parameters
that could change within the outer algorithm.

Typical examples are parameter estimation and optimal control of dy-
namic systems, see Schittkowski [8, 11] or Blatt and Schittkowski [1]. In
these cases we need to calculate derivatives with respect to parameters that
occur in the initial values or the right-hand side of an ordinary differential
equation of the form

ẏ1(t) = h1(y, x, t), y1(0) = y01(x),

...
...

ẏm(t) = hm(y, x, t), ym(0) = y0m(x).

In order to avoid the approximation of derivatives by divided differences,
we can solve the variational equations to compute ∇y(x, t), where y(x, t)
denotes the solution of the ODE. To formulate these equations, we need the
partial derivatives

∂

∂yj
hi(y, x, t),

∂

∂xk

y0i (x),
∂

∂xk

hi(y, x, t)

for i, j = 1, . . . , m and k = 1, . . . , n.

9



Moreover, the outer optimization algorithm might require the evaluation
of gradients of an objective function that is defined in the same input file,
with respect to the optimization variables x only, or a separate integration
of the ODE by implicit methods, for which we need only the derivatives
with respect to y. But we do not need any derivatives for the additional
variable t. Note that also in the previous PCOMP version it is possible to
evaluate derivatives for certain subsets of all declared functions.

The new version of PCOMP uses an index array to determine for which
indices the first or second derivatives are to be evaluated.

4 Second Derivatives

Second derivatives are often highly desirable to achieve reliable and efficient
algorithms. If we need to apply an implicit method to solve the variational
equations of an ordinary differential equation for which derivatives of the so-
lution are to be computed, then second derivatives of the original system are
required. Another example is the usage of Newton’s method for the solution
of systems of nonlinear equations or nonlinear programming problems.

Second derivatives are easily obtained by an extension of the forward
accumulation method that has been implemented in PCOMP. In order to
apply any automatic differentiation technique to calculate the derivatives of
a function f(x) for x ∈ R

n, the first step is to convert f into a sequence of
basis functions {fi}, using auxiliary variables for intermediate values. We
assume that there are a finite sequence of basis functions fn+1, . . . , fm and
index sets Ji ⊂ {1, . . . , i− 1}, such that the function value of f at any given
point x can be obtained by the following program,

for i := n+ 1 to m do
xi := fi(xl)l∈Ji

;
f(x) := xm;

see Dobmann et al. [2] for details. Basis functions are elementary arithmetic
operations and intrinsic or external functions, where the number of operands
is limited by a constant independent of n.

Proceeding from a given factorization, derivative values up to second
order can be obtained by inserting the corresponding derivatives of the basis
functions into the algorithm above:

for i := 1 to m do begin
∇xi := ei;
∇2xi := 0;

end;

10



for i := n+ 1 to n do begin
xi := fi(xl)l∈Ji

;
∇xi :=

∑
j∈Ji

∂
∂xj

fi(xl)l∈Ji
∇xj ;

∇2xi :=
∑

j∈Ji

(
∂

∂xj
fi(xl)l∈Ji

∇2xj +
∑

k∈Ji
∇xj

∂2

∂xj∂xk
fi(xl)l∈Ji

(∇xk)
T
)
;

end;
f(x) := xm;
∇f(x) := ∇xm;
∇2f(x) := ∇2xm;

It is important to understand that function and derivative values are
simultaneously computed in forward accumulation mode, i.e., PCOMP uses
alternative subroutines for function evaluation only, for function and gradient
evaluation, and for function, gradient, and Hessian evaluation.

Although generated Fortran code for the evaluation of functions and gra-
dients based on the reverse mode, is substantially faster than interpreting
the intermediate code, this approach cannot be used to calculate second
derivatives. This is a fundamental drawback of the implemented reverse ac-
cumulation algorithm, see Griewank [4] for a more rigorous treatment of the
problem.

5 Program Organization

PCOMP is a collection of Fortran subroutines that can be subdivided into
four different categories. In this section we want to give only a short overview
of the way PCOMP works; for more details we refer to the user’s guide
pcompdoc.ps contained in the subdirectory ./doc of the PCOMP package.

5.1 Generation of Intermediate Code

First of all, the PCOMP source code is analyzed by the subroutine SYMINP.
Intermediate code is generated for subsequent evaluation by SYMFUN, SYM-

GRA, or SYMHES, or alternatively for transformation into executable Fortran
code by SYMFOR. If there is any error during the processing of the input file,
SYMINP is interrupted and the error code can be retrieved from the integer
parameter IERR. This error code and the corresponding line number can be
passed to SYMERR to generate an error message on standard output. Note
that the parser stops at the first error found.

If no errors have been detected, the generated intermediate code and
additional data are stored in a double precision working array WA and an
integer working array IWA. These two working arrays must be passed to all

11



subsequently called subroutines for function and derivative evaluation or for
code generation, respectively.

Since PCOMP supports a modular concept, the generated intermediate
code and the additional data are stored in an external file SYMFIL, from
where it can be retrieved using the subroutine SYMPRP. A new feature of
the 1999 version of PCOMP is the possibility to generate additional debug
information, see Dobmann et al. [3] for details of this option.

5.2 Runtime Evaluation of Functions and Derivatives

As outlined in the previous subsection, the intermediate code generated by
SYMINP is passed to SYMFUN in the form of a real and an integer working
array. Given any variable vector x, this subroutine computes the corre-
sponding function values fi(x) by interpreting the intermediate code. The
subroutines SYMGRA and SYMHES are very similar to SYMFUN. The only
distinction is that they also compute the gradients or gradients and Hessians
of the symbolically defined functions, respectively.

The 1999 version of PCOMP requires an additional index array DFX to
indicate for which variables the first or second derivatives are to be evaluated.
Note that already in the previous PCOMP version it is possible to calculate
function values and derivatives only for some of the declared functions.

5.3 Generation of Fortran Code

Proceeding from the intermediate code generated by the parser SYMINP,
the subroutine SYMFOR generates two Fortran subroutines for function and
gradient evaluation on a given output file. These routines have to be compiled
and linked separately. The calling sequences of the generated subroutines
XFUN and XGRA are analogous to SYMFUN and SYMGRA, except that no
working arrays are required.

5.4 Interface to External Subroutines

The basic idea of PCOMP is to factorize a given function f(x) with respect
to a set of library functions, for which derivatives can easily be computed,
for instance elementary arithmetic and intrinsic functions. For a complete
list of available operations, we refer to Dobmann et al. [2].

In some applications it is desirable to extend the list of library functions
and to allow for user-provided symbols in the source code. Thus PCOMP can
easily be extended to accept additional functions by inserting information
about structure, type, and symbolic name into the parser and by defining

12



subroutines for function, gradient, and Hessian evaluation called EXTFUN,
EXTGRA, and EXTHES. For more details and an example see Dobmann
et al. [3].

References

[1] M. Blatt and K. Schittkowski. Optimal control of one-dimensional par-
tial differential algebraic equations with applications. Annals of Opera-
tions Research, to appear.

[2] M. Dobmann, M. Liepelt, and K. Schittkowski. Algorithm 746:
PCOMP: A Fortran code for automatic differentiation. ACM Trans-
actions on Mathematical Software, 21:233–266, 1995.

[3] M. Dobmann, M. Liepelt, K. Schittkowski, and C. Trassl. PCOMP: A
Fortran code for automatic differentiation – language description and
user’s guide (version 5.3). Technical report, University of Bayreuth,
Bayreuth, Germany, 1996.

[4] A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe,
editors, Mathematical Programming: Recent Developments and Applica-
tions, pages 83–107. Kluwer Academic Publishers, Boston, 1989.

[5] A. Griewank, D. W. Juedes, and J. Srinivasan. ADOL-C: A package for
the automatic differentiation of algorithms written in C/C++. Preprint
MCS-P180-1190, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Illinois, 1991.

[6] D. W. Juedes. A taxonomy of automatic differentiation tools. In
A. Griewank and G. Corliss, editors, Proceedings of the Workshop on
Automatic Differentiation of Algorithms: Theory, Implementation and
Applications, pages 315–330. SIAM, Breckenridge, Colorado, 1991.

[7] K. Schittkowski. Parameter estimation in systems of nonlinear equa-
tions. Numerische Mathematik, 68:129–142, 1994.

[8] K. Schittkowski. Parameter estimation in differential equations. In R. P.
Agarwal, editor, Recent Trends in Optimization Theory and Applica-
tions, pages 353–370. World Scientific Publishing Company, Singapore,
1995.

13



[9] K. Schittkowski. Parameter estimation in one-dimensional time-
dependent partial differential equations. Optimization Methods Soft-
ware, 7:165–210, 1997.

[10] K. Schittkowski. PDEFIT: A Fortran code for parameter estimation in
partial differential equations. Optimization Methods Software, 10:539–
582, 1999.

[11] K. Schittkowski. EASY-FIT: A software system for data fitting in dy-
namic systems. Journal of Design Optimization, to appear.

14


