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This paper deals with the efficient simulation of the dynamical behaviour of Molten Carbonate Fuel Cells (MCFCs). MCFCs

allow an efficient and environmentally friendly energy production via electrochemical reactions. Their dynamics can be

described by large scale systems of up to currently 22 nonlinear partial differential algebraic equations (PDAE). The paper

also serves as a basis for later parameter identification and optimal control purposes. Therefore, the numerical simulations

are particularly based on hierarchically embedded systems of PDAE, first of all in one space dimension. The PDAE are

of mixed parabolic-hyperbolic type and are completed by nonlinear initial and boundary conditions of mixed type. For

a series of embedded models in one space dimension, the vertical method of lines (MOL) is used throughout this paper.

For the semi-discretization in space appropriate difference schemes are applied depending on the type of equations. The

resulting system of ordinary differential algebraic equations (DAE) in time is then solved by a standard RADAU5 method.

In order to justify the numerical procedure, a detailed index analysis of the PDAE systems with respect to time index,

spatial index and MOL index is carried through. Because of the nonlinearity of the PDAE system, the existing theory

has to be generalized. Moreover, MOL is especially suited for near optimal real time control on the basis of a sensitivity

analysis of the semi-discretized DAE system, since a theoretically safeguarded sensitivity analysis does not exist so far

for PDAE constrained optimal control problems of the above type. Numerical results complete the paper and show their

correspondence with the expected dynamical behaviour of MCFCs.

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Molten Carbonate Fuel Cells (MCFCs) produce electric energy with high efficiency in an environmentally friendly process.

Avoiding direct combustion, MCFCs convert chemical energy contained in fuel and oxidizer to electric energy via elec-

trochemical reactions. Although natural gas usually is recommended, MCFCs can be operated by a wide variety of fuels

containing non oxidised carbon or hydrogen, as can be found in many industrial processes. Performance, availability and

service life of MCFC stacks are greatly dependent on their operating cell temperature which usually lies at about 600 ◦C.

Due to their relatively high operating temperature, MCFCs are especially promising among the various types of fuel

cells, since they do not rely on external reforming, i. e. an external production of hydrogen. External reforming not only

increases build-up costs, but also negatively affects the overall energy balance. Moreover, high cell temperatures allow the

production of highly valuable heat, which make MCFCs attractive for many industrial applications and for dispersed power

supply. On the other hand, the operating temperatures are still low enough to avoid material corrosion, if the cell stacks

are controlled properly. Therefore the control of the operation temperature within a specified range and the reduction of

temperature fluctuations and gradients are highly desirable to extend the cell’s lifespan. These requirements provide the

objectives for control purposes, which will be the subject of subsequent papers.
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∗∗ Currently: Universität Bayreuth, Physikalische Chemie II
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Principles of operation and first experiences for MCFCs can be found in [4,8], and [13].

Concerning mathematical modelling of MCFCs, transient models from [2] are used in this paper. They are based on phys-

ical phenomena and describe the concentrations of the various chemical species and the associated molar flows in the anode

and cathode channels, the temperatures in the gas and solid phases as well as the potential field in the electrode/electrolyte

compound. One of the most important features is that these models contain only few restrictions on the current density

distribution. For the electrode kinetics a pore model similiar to [12] is applied, which combines Tafel microkinetics with

mass transport kinetics. The whole model is presented in dimensionless numbers describing characteristic properties of the

system and is taken from [3]. The resulting mathematical model currently consists of up to 22 nonlinear partial differential

algebraic equations of mixed parabolic-hyperbolic type together with appropriate initial and boundary conditions.

For more information on the modelling and simulation of various types of fuel cells it is referred to [2].

2 One dimensional models

The physical model is based on the following chemical reactions. Within the gas of the anode channel (flowing from left to

right, c. f. Fig. 1) the reforming reaction

CH4 + 2 H2O � CO2 + 4 H2

takes place. At the anode and cathode electrode we have the following electro-chemical reactions

H2 + CO2−

3 → H2O + CO2 + 2e− ,

1
2 O2 + CO2 + 2e− → CO2−

3 .

The anode exhaust gas is burned in a combustion chamber and fed into the cathode channel. Carbonate ions are transferred

between the electrodes through the electrolyte. The bipolar plate serves as heat conducting material only. From the cell’s

outside, the electric current can be collected at the electrodes.

This 1D single counter-flow cell model serves as basic physical model of the Hot Module concept of the German MTU

CFC Solutions GmbH, Munich. Their Hot Module MCFC is made of a stack of 342 cross-flow fuel cells and is now about to

become commercially used. It can produce up to 250 kW of electric power at over 50 % overall electric efficiency, not taking

into account the exhaust heat. One of the first Hot Modules is operated since October 2002 by the IPF-Heizkraftwerks-

betriebsgesellschaft mbH at the electric power station of the Magdeburg University Hospital. Both companies are partners

in the aforementioned BMBF sponsored project.
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Fig. 1 Working principle of MCFC with internal reforming. Domains, variables, flows, and boundary conditions.
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In the following the structure of the underlying mathematical PDAE models is described. All dependent variables of the

PDAE systems considered in this paper depend on the spatial variable z ∈ [0, 1] and the time τ ∈ [0, τf ]. The dependent

variables are the temperatures of the anode and cathode gas, θa(τ, z) and θc(τ, z), resp., the temperature θs(τ, z) within the

solid, i. e. the electrode/electrolyte compound, the molar fractions xa,1(τ, z), . . . , xa,n(τ, z), resp. xc,1(τ, z), . . . , xc,n(τ, z)
of the n chemical species (n = 6, see Table 1) involved in the aforementioned reactions and finally the molar flows ga(τ, z)
and gc(τ, z) in the anode and cathode channels, respectively.

Table 1 Chemical species and their notation.

j 1 2 3 4 5 6

CH4 H2O H2 CO2 O2 N2

A more detailed second model also includes the dynamical behaviour of the potential differences Φa(τ, z), Φe(τ, z),
Φc(τ, z), and the cell voltageV (τ) in the electrode/electrolyte compound as well as the current density i(τ, z); see again Fig. 1.

The first PDAE system of dimension 17 modelling the material and energy balances reads as follows; see [3]:

∂θs

∂τ
= λ

∂2θs

∂z2
+ ϕ1(θs, θa, θc, xa, xc,Φa,Φe,Φc) , (1a)

∂θa

∂τ
= −ga θa

∂θa

∂z
+ ϕ2(θs, θa, xa,Φa) , (1b)

∂xa,j

∂τ
= −ga θa

∂xa,j

∂z
+ ϕ3,j(θs, θa, xa,Φa) , j = 1, . . . , n , (1c)

0 =
∂ (ga θa)

∂z
+ ϕ4(θs, θa, xa,Φa) , (1d)

∂θc

∂τ
= gc θc

∂θc

∂z
+ ϕ5(θs, θc, xc,Φc) , (1e)

∂xc,j

∂τ
= gc θc

∂xc,j

∂z
+ ϕ6,j(θs, θc, xc,Φc) , j = 1, . . . , n , (1f)

0 =
∂ (gc θc)

∂z
+ ϕ7(θs, θc, xc,Φc) . (1g)

If the potential differences Φa, Φe, and Φc are assumed to be constant, we obtain the first simplest 1D model (1). This

model can then be hierarchically embedded into a more detailed second 1D model consisting of (1a)–(1g) together with the

dynamics (2a)–(2e) for the potential differences Φa, Φe, and Φc and the cell voltage V :

∂Φa

∂τ
=
(

i− ia(θs, xa,Φa)
)

/ca , (2a)

∂Φe

∂τ
= −

(

i− ie(Φe)
)

/ce , (2b)

∂Φc

∂τ
= −

(

i− ic(θs, xc,Φc)
)

/cc , (2c)

dV

dτ
=
(

∫ 1

0

i(τ, z̄) dz̄ − Icell(τ)
)

/cv , (2d)

completed by the algebraic equation

−Φa(τ, z) + Φe(τ, z) + Φc(τ, z) − V (τ) = 0 . (2e)

The combined model (1), (2) additionally takes into account the charge balances. The complicated nonlinear source terms

ϕ� and i� (�: all indices that apply) can be found in [3]. The quantities c� and λ are positive constants. The time dependent

function Icell(τ) denotes the total cell current and can be considered as an input variable of the system which is either to be

prescribed or subject to optimization.

The PDAE system (1) is now completed by the following boundary conditions

∂θs

∂z

∣

∣

∣

z=0
= 0 , (3a)
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∂θs

∂z

∣

∣

∣

z=1
= 0 , (3b)

θa(τ, 0) = θa,in(τ) , (3c)

xa,j(τ, 0) = xa,j,in(τ) , j = 1, . . . , n , (3d)

ga(τ, 0) = ga,in(τ) , (3e)

θc(τ, 1) = θc,in(ga(τ, 1), xa(τ, 1), θa(τ, 1), ga(τ, 0), xa(τ, 0)) , (3f)

xc,j(τ, 1) = xc,j,in(ga(τ, 1), xa(τ, 1), ga(τ, 0), xa(τ, 0)) , j = 1, . . . , n , (3g)

gc(τ, 1) = gc,in(ga(τ, 1), xa(τ, 1), ga(τ, 0), xa(τ, 0)) , (3h)

and by the initial conditions

θs(0, z) = θs,0(z) , (4a)

θa(0, z) = θa,0(z) , (4b)

xa,j(0, z) = xa,j,0(z) , j = 1, . . . , n , (4c)

θc(0, z) = θc,0(z) , (4d)

xc,j(0, z) = xc,j,0(z) , j = 1, . . . , n . (4e)

By (3a) and (3b) the thermal insulation of the electrode/electrolyte compound against the surrounding gas is described.

Eqs. (3c)–(3e) describe the conditions at the anode inlet. Here the functions θa,in(τ), xa,j,in(τ), ga,in(τ) can also serve as

input variables. Eqs. (3f)–(3h) describe the conditions at the cathode inlet, which is connected with the anode outlet via

the combustion chamber. Here the functions θc,in, xc,j,in, gc,in describe the catalytic combustion of the exhaust anode gas.

This combustion process may also be controllable by feeding air from the cell’s outside; see again Fig. 1. However, the

functions θs,0(z), θa,0(z), xa,j,0(z), θc,0(z), and xc,j,0(z) representing the initial conditions (4) at time t = 0 must be

prescribed in any case.

For the complete second model (1), (2) additional initial conditions must be prescribed besides (3) and (4):

Φa(0, z) = Φa,0(z) , (5a)

Φe(0, z) = Φe,0(z) , (5b)

Φc(0, z) = Φc,0(z) , (5c)

V (0) = V0 . (5d)

The model is governed by different time constants. While the charge balances (2) are very fast, the energy and mass balances

in the gas phases (1b–1g) are slower by several orders of magnitude. The solid temperature is governed by time constants

which are even larger than those by three to four orders of magnitude. This can be used to establish further models by

assuming steady state for the charge balances together with energy and mass balances in the gas phases. This is done by

setting the appropriate time derivatives to zero and allows to simulate medium and long time behaviour.

The model is completely formulated in dimensionless terms and can easily be extended to describe spatially two-dimen-

sional cross-flow systems as well as spatially three-dimensional cell stacks.

3 Index analysis of the PDAE systems

The PDAE system (1) and its augmented version (1), (2) both match the following form

Auτ +B uzz + C[u]uz + ψ(τ, z, u) = 0 (6)
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with

A =







1 0 0

0 I 0

0 0 0






, B =







−λ 0 0

0 0 0

0 0 0






, C[u] =







0 0 0

0 C22[u] 0

0 C32[u] C33[u]






,

when choosing the partition

u = (θs | θa, θc, xa, xc | ga, gc)

and, resp.,

u = (θs | θa, θc, xa, xc,Φa,Φe,Φc, V | ga, gc, i) .

Here, the matrix C22[u] is nonlinear and the matrices C32[u] and C33[u] are linear. After a coordinate transformation

va := θa ga , vc := θc gc (7)

replacing ga and gc, we end up with a linear matrix C22[u], a null matrix C32, and a constant matrix C33.

Hence, the dependent variable u is partioned according to

u = (uI|uII|uIII) =







(θs|θa, θc, xa, xc|va, vc) for (1) after (7),

(θs|θa, θc, xa, xc,Φa,Φe,Φc, V |va, vc, i) for (1, 2) after (7).
(8)

3.1 Time index

In Lucht and Debrabant [5] a special PDAE of type (6) is investigated,

Auτ +B uzz + C[u]uz +Du = f(τ, z) , (9)

where the matrix C[u] is linear as for (6) after the transformation (7). For this type of PDAE, Lucht and Debrabant define a

differential time index as follows: If the matrix A is regular, the time index ντ of the PDAE (9) is defined to be zero. If A is

singular, then ντ is the smallest number of times, the PDAE must be differentiated with respect to τ , in order to determine

uτ as a continuous function of τ , z, u and certain space derivatives of components of u. This definition carries over to eq. (6),

too. A similar procedure for a semi-linear first order PDAE is described in [6].

We are now going to compute the time index ντ for model (1) after the transformation (7). We start with (1d), (1g), i. e.,

0 =
∂va

∂z
+ ϕ4(θs, θa, xa,Φa) , (10a)

0 =
∂vc

∂z
+ ϕ7(θs, θc, xc,Φc) , (10b)

differentiate both equations with respect to τ and substitute the right hand sides of (1) (and (2), if model (1), (2) is investigated):

0 =
∂2va

∂z∂τ
+ ψa(uI

zz, u
II
z , u) , (11a)

0 =
∂2vc

∂z∂τ
+ ψc(u

I
zz, u

II
z , u) . (11b)

These equations can be solved for

∂va

∂τ
= −

∫ z

0

ψa(uI
zz, u

II
z , u) dz̄ , (12a)

∂vc

∂τ
= −

∫ z

0

ψc(u
I
zz, u

II
z , u) dz̄ . (12b)
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The right hand sides of these equations are continuous functions with suitable integrands ψa and ψc, resp. Therefore the

time index is ντ = 1.

For model (1), (2) we additionally have to take into account (2e). Differentiation with respect to τ and substitution of the

right hand sides of (2) yield

i− ia
ca

+
i− ie
ce

+
i− ic
cc

+
1

cv

(

∫ 1

0

i(τ, z̄) dz̄ − Icell(τ)

)

= 0 . (13)

Since the derivative ∂i
∂τ

does not appear, we have to differentiate the equation again:

β
∂i

∂τ
(τ, z) +

∫ 1

0

∂i

∂τ
(τ, z̄) dz̄ + ψ(uI

zz, u
II
z , u,

dIcell
dτ

) = 0 (14)

with a suitable function ψ and β := cv

ca

+ cv

ce

+ cv

cc

. This is a linear Fredholm integral equation of second kind for the

function w(z) := ∂i
∂τ

(z, τ). The associated homogeneous integral equation

β w(z) +

∫ 1

0

w(z̄) dz̄ = 0 (15)

has the unique solution w(z) ≡ 0, since β �= −1 for the given data. Therefore eq. (14) is uniquely solvable for

∂i

∂τ
= ψ̄(uI

zz, u
II
z , u,

dIcell
dτ

) (16)

with another suitable continuous function ψ̄. As a result we obtain that model (1), (2) has time index ντ = 2.

3.2 Spatial index

The definition of the spatial index in [5] can be carried over to the more general eq. (6). Obviously the spatial index of

model (1) is νz = 0, since all factors in front of the highest spatial derivatives do not vanish.

We are now going to investigate the spatial index for model (1), (2). Since V does not depend on z, it is sufficient, to

differentiate eqs. (2a–2c) and (2e) only with respect to z. Choosing suitable continuous functions χj , one obtains















∂
∂τ

+ 1
ca

∂ia

∂Φa

0 0 − 1
ca

0 ∂
∂τ

− 1
ce

∂ie

∂Φe

0 1
ce

0 0 ∂
∂τ

− 1
cc

∂ic

∂Φc

1
cc

−1 1 1 0





























∂Φa

∂z

∂Φe

∂z

∂Φc

∂z

∂i
∂z















=















χ1(u
I
z, u

II
z )

−χ2(u
I
z, u

II
z )

−χ3(u
I
z, u

II
z )

0















=















χ̃1(u, ut, u
I
z)

−χ̃2(u, ut, u
I
z)

−χ̃3(u, ut, u
I
z)

0















. (17)

The derivative uI
z = ∂θs

∂z
as argument of the functions χj is obtained by integrating eq. (1a) with respect to z. We have

to show that this operator equation allows a continuous solution. Therefore we investigate a differential algebraic equation

system in time of following type:















∂
∂τ

+ ξ1(τ) 0 0 − 1
ca

0 ∂
∂τ

− ξ2(τ) 0 1
ce

0 0 ∂
∂τ

− ξ3(τ)
1
cc

−1 1 1 0





























w1(τ)

w2(τ)

w3(τ)

w4(τ)















=















χ̄1(τ)

−χ̄2(τ)

−χ̄3(τ)

0















. (18)

If we substitute the first three equations into the last equation after differentiating it with respect to τ , we obtain

(

1

ca
+

1

ce
+

1

cc

)

w4 =

3
∑

j=1

ξj wj −

3
∑

j=1

χ̄j . (19)

This equation can be solved for w4 if β �= 0 and inserted into the first three equations. This yields a linear inhomogeneous

system of ordinary differential equations whose solutions are continuous. In order to have a continuous solution of the

operator equation (17), we have to guarantee consistency of the differential algebraic system, i. e., we must not require initial

conditions for w4(0) = ∂i
∂z

(0, z). Then the spatial index for model (1), (2) is νz = 1.
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4 Index analysis of the MOL system

After an equidistant semi-discretization in space we get a semi-explicit differential algebraic equation system in time τ for

the variables U = (u1, . . . , uM ), M odd, with uj(τ) ≈ u(τ, zj):

A
d

dτ
U + b(U) = 0 (20)

with the block diagonal matrix A = diag(A1, . . . ,A1), where A1 = diag(I, 0). The spatial derivatives of uII and uIII

are approximated by upwind formulas of order 1, the second spatial derivative of θs is approximated by the central differ-

ence quotient.

We are now going to determine the differentiation index of (20) for model (1) modifying an idea of [1]. The discretized

version of (10) reads as follows

0 =
vj

a − vj−1
a

h
+ ϕ4(θ

j
s, θ

j
a, x

j
a,Φ

j
a) , for j = 2, . . . ,M , (21a)

0 =
vj+1

c − vj
c

h
+ ϕ7(θ

j
s, θ

j
c , x

j
c,Φ

j
c) , for j = 1, . . . ,M − 1 . (21b)

Here, v1
a resp. vM

c are given by (3c), (3e), resp. (3f), (3h).

Differentiation of eqs. (21a) yields













1

−1 1
. . .

. . .

−1 1

























d
dτ
v2

a
d
dτ
v3

a

...
d
dτ
vM

a













= −ϕ̄4(U
I, U II) . (22)

An analogous result holds for (21b). Obviously, the coefficient matrix is regular. Therefore the differential index of the

system (20) is νMOL = 1, which coincides in this case with the perturbation index of the system (20).

Next we determine the differentiation index of (20) for model (1), (2). We first substitute the integral
∫ 1

0
i(τ, z̄) dz̄

in eq. (2d) by a quadrature formula of type
∑M

k=1 ωk i(τ, zk) with
∑M

k=1 ωk = 1 and ωk > 0, e. g., Simpson’s rule.

Differentiating the semi-discretized eq. (2e) and substituting the semi-discretized eqs. (2a)–(2d) yields

i− ia|(τ,zl)

ca
+
i− ie|(τ,zl)

ce
+
i− ic|(τ,zl)

cc
+

1

cv

(

M
∑

k=1

ωk i(τ, zk) − Icell(τ)

)

= 0 (23)

respectively,

G









i(τ, z1)
...

i(τ, zM )









= γ(U I, U II, Icell) . (24)

Here, G = diag(β, . . . , β) + (1, . . . , 1)�(ω1, . . . , ωM ), and U I, U II are the discretized values of uI and uII, resp. The

matrix G is obviously diagonal-dominant for β > 1, since
∑M

k=1 ωk = 1 and ωk > 0.

After another differentiation step we can solve for ∂i
∂τ

(τ, zj), j = 1, . . . ,M . Hence, the semi-discretized model (1), (2)

has differentiation index νMOL = 2.

5 Numerical results

The numerical procedure for the solution of system (1), (2) is the vertical method of lines based on the discretization

described in Sect. 4. For the simulation the software package EASY-FIT (see [10] and [11]) is used, which is appropriate for

parameter identification and optimization of those systems, too. The resulting DAE system (20) is thereby integrated using

a RADAU 5-method.

The following figures show the numerical results obtained [7, 9]. While most of the variables seem to have reached a

stationary state at the final time τf of the simulation, the solid temperature θs does not. This is due to the fact, that different
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Fig. 2 Molar fraction of methane CH4 in the anode channel.
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Fig. 3 Molar fraction of hydrogen H2 in the anode channel.
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Fig. 4 Molar flow ga in the anode channel.
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Fig. 5 Temperature θa of the anode gas.
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Fig. 6 Molar fraction of oxygen O2 in the cathode channel.

0

0.5

1 0

0.5

1
0

0.05

0.1

t

z

Fig. 7 Molar fraction of carbon dioxide CO2 in the cathode channel.

time constants are present. The solid temperature is here the slowest variable because of the large heat capacity of the cell

stack. Thus the Figs. 2–9 show a quasistationary behaviour so far.

Fig. 2 shows the dynamic behaviour of the molar fraction for methane in the anode channel over the space time grid.

Methane enters the anode channel with a high concentration. Then it is used for the internal reforming reaction until a reaction

equilibrium is nearly obtained in space direction. Simultaneously the molar fraction of hydrogen in the anode channel (Fig. 3)

increases firstly in space direction, since it is produced by the internal reforming, whereas it later on decreases, since it is

consumed in the oxidization reaction at the anode electrode. Because of the increasing number of molecules in the gas stream

the molar flow ga in the anode channel (Fig. 4) also increases over the space variable. Since the endothermic reforming

reaction takes place near the anode inlet (z = 0), the anode gas temperature θa is decreased along the spatial coordinate z.

The exothermic electochemical reactions occur along the whole channel and heat up the solid cell parts. From these, the

anode gas is heated up again; see Fig. 5.

The situation in the cathode channel is mainly described by the molar fractions of oxygen (Fig. 6) and carbon dioxide

(Fig. 7). Since these substances are used in the cathode reaction, the associated molar fractions decrease from the cathode

inlet (z = 1) to the outlet (z = 0) monotonously.

Fig. 8 shows the current density distribution. It seems to be dominated by the concentrations of the electrochemical

reaction educts in the cathode channel, oxygen and carbon dioxide.
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Fig. 8 Current density i.
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Fig. 9 Solid temperatur θs.

Finally Fig. 9 shows the behaviour of the solid temperature θs. It decreases slowly, since the sum of the heat, which is

detracted by convection through the cathode gas stream and by the inflow of cold air through the catalytic burner into the fuel

cell, is greater than the heat generated by the chemical reactions. Thus the fuel cell stack cools down in the present simulation.

6 Conclusion and outlook

The model presented in this paper describes the dynamical behaviour of a molten carbonate fuel cell stack. It is not only

interesting from an engineering point of view because MCFC stacks provide an environmentally friendly energy production,

but also from the point of view of applied mathematics: The model generalizes certain types of partial differential algebraic

equations currently under research and yields a challenging optimization problem with (singular) PDE constraints. In the

present paper, a detailed index analysis is performed. As subproblems of the index analysis appear integral equations and

differential-algebraic equations in one variable. The index analysis is the basis for first numerical simulations. These first

simulations and their associated numerical results are presented here for a spatially one-dimensional PDAE model. Further

investigations will be concerned with both more detailed and simplified models, in order to establish a hierarchy of embedded

models. They will differ in spatial dimension, in their way to approximate the steady state at different time scales and in

their associated indices following the lines of this paper. At the end, an optimization shall be performed to control fuel cell

stacks in start-up and shut-down situations and in case of load changes. The hierarchically ordered models will be used for

model reduction in the optimization process in order to reduce the excessively high computing times.
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