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The purpose of this paper is to present practical tools to facilitate the inter-
pretation of parameter estimation results and to optimize experimental designs,
where the underlying dynamical model consists of systems of ordinary or al-
gebraic differential equations. We present a heuristic procedure to compute
significance levels of model parameters, and to allow successive elimination of
redundant ones. For computing optimal experimental designs, we choose the
A-criterion to evaluate the performance of the system, i.e., the identifiability of
model parameters to be computed after getting the experimental data. Pseudo-
weights are introduced and treated as design variables, to reduce the number of
experiments and to figure out those time values at which experiments should be
taken. A couple of practically relevant case studies from chemical engineering
are included, which have been investigated before by other authors.
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1 Introduction

Today there exists a large variety of statistical methods to analyze data and
models especially for nonlinear regression or parameter estimation, see, e.g., the
books of Bard [4], Beck and Arnold [7], Draper and Smith [13], Gallant [16],
Ratkowsky [25], Seber [34], Seber and Wild [35], or Ross [26]. We are inter-
ested in designing experimental studies, for example in chemical or biological
engineering, where a mathematical model is available in form of a system of ordi-
nary or algebraic differential equations. The key idea is to estimate an unknown
parameter vector p = (p1, . . . , pn)T of a mathematical model that describes a
real life situation, by minimizing the distance of some known experimental data
from theoretically predicted values of a model function at certain time values.
Thus, also model parameters that cannot be measured directly, can be identified
by a least squares fit and analyzed subsequently in a quantitative way.

In mathematical notation, we want to solve a least squares problem of the
form

p ∈ IRn :
min

∑l
i=1 (h(p, ti) − yi)2

pl ≤ p ≤ pu ,
(1)
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where h(p, t) := h(p, y(p, t), t) is a fitting function depending on the unknown
parameter vector p, the time t, and the solution y(p, t) of an underlying dynam-
ical system of the form

ẏ1 = F1(p, y, t) , y1(0) = y0
1(p) ,

· · ·
ẏm = Fm(p, y, t) , ym(0) = y0

m(p) .
(2)

Without loss of generality, we assume that the initial time is zero.
Alternatively, the fitting criterion h(p, t) := h(p, y(p, t), z(p, t), t) may de-

pend on md differentiable y(p, t) and ma additional algebraic variables z(p, t).
The dynamical system is given in the form of a system of differential algebraic
equations

ẏ1 = F1(p, y, z, t) , y1(0) = y0
1(p) ,

· · ·
ẏmd

= Fmd
(p, y, z, t) , ymd

(0) = y0
md

(p) ,

0 = G1(p, y, z, t) , z1(0) = z0
1(p) ,

· · ·
0 = Gma(p, y, z, t) , zma(0) = z0

ma
(p) .

(3)

The right-hand side of the differential equations and the initial values may
depend on one or more of the model parameters to be estimated. Now y(p, t) and
z(p, t) are solution vectors of a joint system of md+ma differential and algebraic
equations (DAE). The system is called an index-1-problem or an index-1-DAE,
if the algebraic equations can be solved subject to z, i.e., if the matrix

∇zG(p, y, z, t) (4)

possesses full rank, G(p, y, z, t) = (G1(p, y, z, t), . . . , Gma(p, y, z, t)).
Whenever we try to identify parameters of a dynamical model, the key ques-

tion is whether it is possible at all to identify them and whether the computed
parameters are uniquely determined. Proceeding from an arbitrary distribution
of experimental time values ti, i = 1, . . ., l, and a model function h(p, t), we are
interested in the question whether the parameter p is uniquely determined, i.e.,
whether h(p, ti) = h(p̂, ti) implies p = p̂. If this property holds for arbitrary
distributions of time values and for almost all p ∈ IRn, we say that the model is
structurally globally identifiable or s.g.i. in abbreviated form. If the same prop-
erty is true only for all p̂ in a neighborhood of p, we call the model structurally
locally identifiable or s.l.i., respectively.

There exist many methods to prove whether a model is s.g.i or not, see
Walter [41], Walter and Pronzato [42], or Godfrey and DiStefano [17]. In most
cases, these approaches are restricted to special model classes, for example to
linear time-invariant differential equations. Ben-Zvi, McLellan, and McAuley [8]
present a generalized Markov parameter approach for differential algebraic sys-
tems, and Tayakout-Fayolle, Jolimaitre, and Jallut [36] identified parameters in
chromatography models.

Besides successive linearization, a more general method is applicable at least
in some simple situations, for instance with polynomial, rational, or exponential
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terms at the right-hand side of a differential equation, where we are able to
analyze high-order derivatives ’by hand’. To outline the basic idea, we proceed
from an initial value problem of the form (2) or (3), respectively, and a scalar
fitting criterion h(p, t). Assuming that h(p, y, t) and F (p, y, t) or F (p, y, z, t)
and G(p, y, z, t), respectively, are infinitely often continuously differentiable with
respect to y and t, we try to find a power series for h(p, t) at t = 0 in the form

h(p, t) =
∞∑

k=0

1
k!

ak(p)tk .

Here ak(p) denotes the k-th one-sided derivative of h(p, t) at t = 0, i.e., the
Taylor coefficient

ak(p) = lim
t↘0

dk

dtk
h(p, t)

for k = 0, 1, . . .. Thus, a sufficient condition for s.g.i. is that ak(p) = ak(p̂) for
p, p̂ ∈ IRn implies p = p̂, see also Pohjanpalo [24] or Walter and Pronzato [42].
The identification of chemical engineering models is also studied by Gorskii and
Spivak [20].

If, on the other hand, it is known in advance that a model is neither s.g.i. nor
s.l.i., then it is much more difficult to find out which parameters are redundant or
correlated and cannot be estimated subject to a given standard deviation of the
experimental errors. One possible approach is investigated in this paper in more
detail. Proceeding from a statistical analysis, a so-called top-down classification
is proposed by Schneider, Posten, and Munack [32], see also Majer [22]. The
idea is to find certain clusters of parameters by considering the absolutely largest
coefficient of the eigenvector subject to the smallest eigenvalue of the Fisher
information matrix, and to eliminate successively corresponding parameters, see
Majer [22]. However, the approach is heuristic and requires additional statistical
information about error distributions. It is possible that more experimental data
and measurement sets must be supplied to stop the elimination process earlier,
i.e., to identify more parameters.

Numerous other procedures have been investigated in the literature, where
many of them are pure heuristic ones applicable only in special situations.
Otarod and Happe [23], for example, compare correlations between different
data sets. The underlying question how to identify relevant parameters, is also
discussed in a more general setting how to select an appropriate model. This
is discussed by Bortz and Nelson [10] in the context of HIV infection dynamics
based on maximum likelihood formulations. Maximum likelihood estimators are
also applied by Gorfine et al. [19] for testing statistical hypotheses in B Lym-
phocyte models. Generalized sensitivity functions are proposed by Thomaseth
and Cobelli [37] for identifying parameters of input-output experiments.

Besides the question whether individual parameters can be identified or not,
a more general problem is to investigate the identifiability of unknown coeffi-
cient functions of model equations. Particularly in case of partial differential
equations, one is also interested in computing certain functions depending on
the time or spatial variable by formulating an inverse problem.
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However, inverse problems are often ill-posed. When trying to identify a
coefficient function by measured output values, the following three difficulties
occur:

1. A solution does not exist for a given set of parameters.

2. A solution is not unique.

3. The solution does not depend continuously on the unknown coefficient
functions.

Otherwise, we say that the problem is well-posed in the sense of Hadamard, see
Baumeister [6], DuChateau [14], or Banks and Kunisch [3] for more details.

The first question is how to get suitable confidence intervals for the estimated
parameters. This is one of the main investigations when analyzing the output
of a data fitting run. A short outline is given in Section 2, where we provide
the basic analysis for the subsequent sections and introduce in particular the
Fisher information matrix. The key idea is to investigate the confidence region
subject to a given significance level, an ellipsoid which is typically approximated
by a surrounding box, the confidence intervals. Whereas small interval lengths
can be interpreted as well-identifiable parameters, larger intervals could be due
to degenerated ellipsoids. For these and related modeling and simulation tech-
niques, see also the books of Walter and Pronzato [42] and of van den Bosch
and van der Klauw [39].

In many practical situations, dynamical models contain too many parame-
ters which are difficult to estimate simultaneously, i.e., are overdetermined. An
important question is how to detect the relative significance of parameters and
how to eliminate redundant ones based on a given experimental design. A heuris-
tic approach going back to Schneider, Posten, and Munack [32] is presented in
Section 3, which is computationally attractive and easy to implement. The idea
is to analyze eigenvalues and eigenvectors of the covariance matrix. The abso-
lutely largest coefficient of the eigenvector belonging to the largest eigenvalue is
eliminated and marks a less significant parameter. The procedure is repeated
until some criteria are satisfied, e.g., reaching a certain significance tolerance.
The result is a serial order of parameters according to their relevance, and which
helps to decide which parameters could be eliminated or whether additional ex-
periments should be performed. A case study is presented in Section 4, a model
for an isothermal batch reactor in form of a system of differential algebraic
equations.

So far we proceeded from a given experimental design and tried to compute
model parameters by a least squares fit. However, the initial design might
not be the best one and the question is how to improve or even optimize it.
Possible design parameters are time dependent input feeds, initial concentrations
or temperatures. The goal is now to construct a suitable performance criterion
depending on design parameters, additional constraints as far as necessary, and
to solve the resulting nonlinear optimization problem to get better experimental
designs.
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Since the confidence intervals mentioned above are mainly determined by
the diagonal elements of the covariance matrix, a possible objective function for
computing optimal designs is the trace of this matrix, see Section 5. A cou-
ple of alternative criteria are available, by which the size and the structure of
the ellipsoid are measured, for example based on the eigenvalues of the covari-
ance matrix. These methods have been discussed in the literature before, see
e.g. Winer, Brown and Michels [43], Ryan [28], Rudolph and Herrendörfer [27],
Baltes et al. [1], or Lohmann et al. [21], often based on automatic differentiation
for computing mixed partial derivatives of the right-hand side of the dynamical
system. However, analytical derivatives are often not available. Instead, we ap-
ply simple forward differences and show that efficient computation of derivatives
is possible if carefully implemented.

There remains the question how to locate experimental time values. Espe-
cially in case of time expensive experiments, it is highly desirable to minimize
their number and to conduct experiments only within relevant time intervals.
Thus, we apply the same strategy outlined before, but add artificial weight
factors to the observations at a predefined, relatively dense grid specified in
advance. These weights are considered then as design parameters. A particular
advantage is that derivatives subject to weights are obtained without additional
computational efforts.

To show that our approach is a stable and efficient procedure, two case
studies are included in Section 6 and Section 7. The first one is a microbial
growth model, see Banga et al. [2], which consists of a small system of only
three differential equations, two model parameters and design parameters in
form of initial concentrations and an input feed. However, one of the model
parameters is extremely difficult to estimate and the authors decided to apply
a stochastic search method. The other example is intensively investigated by
Bauer et al. [5], the reaction of urethane. The model consists of three differential
and three algebraic equations, and becomes more complex because of additional
nonlinear equality and inequality constraints.

The techniques described so far do not depend on any special structure of
the mathematical model. The only assumption is smoothness of the model func-
tions, i.e., the functions should be twice continuously differentiable subject to the
model and design parameters. All examples with practical background consist
of ordinary differential or differential algebraic equations, since the imbedded
solution process generates additional numerical noise making numerical results
and conclusions more realistic.

The algorithms are implemented in Fortran as part of the interactive data
fitting system EASY-FIT, see Schittkowski [29, 30], which can be downloaded
from the home page of the author. All presented examples are part of its
database and can be reevaluated or modified. Nonlinear optimization problems
are solved by the SQP code NLPQLP, see Schittkowski [31].
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2 Preliminaries: Fisher Information Matrix and
Confidence Intervals

We proceed from a general nonlinear model in its simplest form

η = h(p, t) + ε . (5)

h(p, t) is a scalar model function depending on a set of model parameters p ∈ IRn.
t ∈ IR is the independent model variable, also called explanatory or regression
variable, in most cases representing the time. The function h(p, t) is supposed
to be differentiable subject to p, and at least continuous with respect to t. It is
assumed that there is a true parameter value p�, which is unknown and which
is to be estimated by a least squares fit. The response function η is called the
dependent model variable.

The above formulation proceeds for simplicity from a scalar variable t. Gen-
eralizations to multi-dimensional regression variables are possible without loss of
generality. Also multi-response models where η possesses arbitrary dimension,
can be considered, see Seber and Wild [35].

To estimate the true, but unknown parameter value p� from given experi-
mental data ti and yi, i = 1, . . ., l, we minimize the least squares function

s(p) =
1

l − n

l∑
i=1

(h(p, ti) − yi)2 (6)

over all p ∈ IRn. Let p̂ denote the solution of this data fitting problem. Then
p̂ is also called the ordinary least squares estimator (OLS) to distinguish it
from alternative techniques, for example from the weighted or generalized least
squares estimator. The question we are interested in is how far away p̂ is from
the true parameter p�.

It is assumed that the independent model values ti are given a priori without
errors, and that εi denotes the statistical error of the measurements or the
response variable, respectively. Moreover, we suppose that the errors εi = yi −
h(p�, ti) are independent and normally distributed with mean value zero and
known constant variance σ2, i.e., that εi ∼ N(0, σ2) for i = 1, . . ., l.

The basic idea is to linearize the nonlinear model in a neighborhood of p� and
to apply linear regression analysis, since linear models are very well understood,
see Seber [33]. By defining

f(p) = (h(p, t1), . . . , h(p, tl)T

and ε = y − f(p�), q = p − p�, ε = (ε1, . . . , εl)T , y = (y1, . . . , yl)T , we get from
the first-order Taylor expansion

s(p) = ‖f(p) − y‖2

≈ ‖f(p�) + ∇f(p�)T (p − p�) − y‖2

= ‖∇f(p�)T q − ε‖2 .
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Here ‖.‖ denotes the Euclidian norm. We denote by F � = ∇f(p�) the Jacobian
matrix of f(p) at p = p�, and assume that F � has full rank. A solution of the
linear least squares problem is immediately obtained from the normal equations

q̂ = (F �F �T )−1F �ε ,

from which we get a first-order approximation of the solution p̂ by

p̂ = p� + (F �F �T )−1F �ε .

From this approximation, some statistical properties known for linear models
can be derived also for nonlinear ones. Under additional regularity assumptions,
see Seber and Wild [35], p̂ and σ̂2 := s(p̂) are consistent estimates of p� and
σ2, respectively. They converge with probability one to the true values, and are
asymptotically normally distributed as l goes to infinity. Moreover, we know
that due to the normal distribution of the errors, p̂ is also a maximum likelihood
estimator.

The error in parameters, p̂− p�, is approximately normally distributed with
mean value 0 and covariance matrix I�

F
−1, where I�

F is defined by

I�
F :=

1
σ2

F �F �T . (7)

In addition, the expression

1
n

(p̂ − p�)T I�
F (p̂ − p�)

follows the F -distribution with (n, l−n) degrees of freedom within the lineariza-
tion error. Thus, an approximate 100(1− α)% confidence region for p� is given
by the set

{p : (p − p̂)T ÎF (p − p̂) ≤ nFα
n,l−n} , (8)

where
ÎF :=

1
σ̂2

∇f(p̂)∇f(p̂)T (9)

estimates I�
F , a result very similar to the corresponding confidence region for

linear models. ÎF is called the Fisher information matrix. For a precise definition
of this matrix and a proof see, e.g., Goodwin and Payne [18].

For a numerical implementation, however, (8) is inconvenient. To get indi-
vidual confidence intervals for the coefficients of p�, we consider an arbitrary
linear combination aT p. It is possible to show that approximately

aT p̂ − aT p�√
aT I�

F
−1a

∼ tl−n , (10)

where tl−n is the t-distribution with l − n degrees of freedom. A 100(1 − α)%
confidence interval is then given by[

aT p̂ − t
α/2
l−n

√
aT I�

F
−1a , aT p̂ + t

α/2
l−n

√
aT I�

F
−1a

]
. (11)
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When setting a = ei for i = 1, . . ., n successively, where ei is the i-th unit vector,
and when estimating I�

F by ÎF , we get the approximate confidence intervals[
p̂i − t

α/2
l−n

√
d̂ii , p̂i + t

α/2
l−n

√
d̂ii

]
(12)

for the i-th individual model parameter value p�
i , i = 1, . . ., n. In this case,

p̂i is the i-th coefficient of p̂ and d̂ii the i-th diagonal element of Î−1
F , see also

Gallant [15] or Donaldson and Schnabel [12].
However, (12) is valid only approximately depending on the quality of the

linearization or the curvature of f(p), respectively. Donaldson and Schnabel [12]
present some examples, where the confidence intervals are very poor. Thus, we
have to be very careful when computing (12) without additional linearization
checks.

3 Significance Levels by Eigenvalue/-vector Anal-
ysis of the Fisher Information Matrix

Proceeding from a parameter estimation model, corresponding data, and a suc-
cessful least squares fit, significance levels of the estimated parameters are to
be evaluated. If a model seems to be overdetermined, i.e., contains too many
parameters compared to the number of equations, the levels give an impression
of the significance of parameters and help to decide upon questions like
- which parameters can be identified,
- which parameters can be treated as constants,
- whether additional experimental should be added or not.

Moreover, overdetermined data fitting problems lead to unstable and slow con-
vergence of Gauss-Newton-type least squares algorithms with a large number of
iterations until termination tolerances are satisfied.

We have seen in the previous section that σ̂2Î−1
F can be considered as an

approximation of the covariance matrix σ2I�
F
−1, where σ̂2 = s(p̂), see (6), and

where ÎF denotes the Fisher information matrix (9). p̂ is a least squares es-
timate for the true, but unknown parameter p�. Assumptions are, as before,
independent and normally distributed errors in the measurements with mean
value 0 and variance σ2.

A more rigorous analysis based on the maximum-likelihood function leads
to the theorem of Cramér and Rao, which states that the inverse of the Fisher
information matrix is a lower bound for the covariance matrix of the parameter
errors.

Since all induced matrix norms are greater than the spectral radius of a
matrix, we apply the L2-norm, i.e.,

‖Î−1
F ‖2

2 = |λmax(Î−1
F )| =

1
|λmin(ÎF )| . (13)

λmax and λmin denote the largest and smallest eigenvalues of a matrix, re-
spectively. Since small eigenvalues of ÎF enforce large entries of the covariance
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matrix, we try to reduce them by successive elimination of parameters corre-
sponding to large eigenvector coefficients. The order by which the variables are
eliminated, can be considered as an indication about their relative significance,
the highest level reflects the highest priority.

We proceed from a given significance tolerance γ > 0 for estimating the error
in the parameter approximations, known experimental data, and an optimal
solution p̂ of the corresponding least squares data fitting problem. We try to
satisfy

‖Î−1
F ‖2 =

√
1

|λmin(ÎF )| < γ . (14)

Assuming a sufficiently accurate approximation of p�, the true parameter vector,
we hope to get sufficiently small variances.

Note that very small or zero eigenvalues lead to the conclusion that some
parameters cannot be estimated at all by the underlying model and the available
data, or that there are combinations of highly correlated parameters, see Cara-
cotsis ans Stewart [11]. To detect the significant parameters on the one hand
and the redundant or dependent parameters on the other we apply the sub-
sequent procedure, see also Schneider, Posten, and Munack [32] or Majer [22].
The idea is to successively eliminate parameters until (14) is satisfied. The cycle
is terminated in one of the following situations:

1. The smallest eigenvalue of the Fisher information matrix is smaller than
a threshhold value, see (14).

2. The parameter correlations are significantly reduced, e.g., by 25 %.

3. None of the above termination reasons is met and all parameters have
been eliminated.

Algorithm 3.1 Let k = 1, Ĵk = ∅, Îk
F =

1
σ̂2

∇f(p̂)∇f(p̂)T , p̂ minimizer of (6),
and γ > 0 be given.

1. Compute the smallest eigenvalue λmin of Îk
F and a corresponding eigen-

vector vmin ∈ IRn, vmin = (vmin
1 , . . . , vmin

n )T .

2. If λmin >
1
γ2

, then stop. The required significance level is reached.

3. Determine j0 with
|vmin

j0 | = max
1≤j≤n

|vmin
j | ,

eliminate the j0-th row and column from Îk
F , denote the resulting matrix

by Îk+1
F , and let Ĵk+1 = Ĵk ∪ {j0}.

4. If k = n − 1 then stop, a further reduction is not possible.

5. Replace k + 1 by k and repeat from Step 1.
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After termination, the indices in Ĵk represent the significance levels of the
parameters. Level 1 corresponds to the first eliminated variable, level 2 to the
second, etc. The final level can be assigned to several parameters indicating a
group of identifiable parameters. Possible conclusions are to add more experi-
mental data or to fix some parameters for subsequent evaluations. Thus, the
determination of significance levels is part of the experimental design process to
validate a parameter estimation model, see Majer [22] for more details.

Since we analyze parameter estimates in unstructured, complex and highly
nonlinear dynamical models, is is recommended to scale the parameter vector p̂
before starting the above procedure.

Example 3.1 A linear ordinary differential equation describes a kinetic process
in the form

ẏ1 = −k1y1 , y1(0) = D ,

ẏ2 = k1y1 − k2y2 , y2(0) = 0 ,
(15)

see LKIN A1/A2/A3/A4 in the EASY-FIT database. A 95 % confidence region
as outlined in the previous section, is shown in Table 1, i.e., ĉi = 2t

α/2
l−n

√
d̂ii,

see (12). The estimated error variance is 0.41 · 10−3, the maximum correlation
is 0.57, and the covariance values are sufficiently small.
Now we introduce some additional parameters with severe internal dependencies,

ẏ1 = −√
k11k12y1 , y1(0) = D1 + 0.1D2 ,

ẏ2 = k11k12y1 − (k21 + 2k22)y2 , y2(0) = 0 .
(16)

The same statistical analysis as above leads to the significance intervals of Ta-
ble 3. The correlation coefficients between k11 and k12, between k21 and k22, and
between D1 and D2 are exactly one. By successive elimination of parameters
with highest coefficient of the eigenvector belonging to the lowest eigenvalue, see
Table 2, priority levels are computed as shown in Table 3. They exactly reflect
the artificially generated dependencies. The parameters k11, k22, and D1 ob-
tained the highest scores and are considered as the most significant ones. We
even observe that the influence of k22 on the solution is greater than that of
k21 as can be expected from their different coefficients in (16). An important
side effect is that the maximum correlation is reduced from 1.0 to 0.56. The
significance level for the successive parameter elimination is γ = 0.05.
Besides of detecting dependencies among parameters, the proposed analysis helps
to find redundant ones, as shown by a slight modification of (15). An additional
redundant parameter r is added to the first differential equation leading to a very
small perturbation of the solution by choosing ε = 10−14,

ẏ1 = −k1y1 + εr , y1(0) = D ,

ẏ2 = k1y1 − k2y2 , y2(0) = 0 .
(17)

The priority analysis detects the redundant parameter r, see Table 4. The start-
ing value of the redundant parameter is not changed by the least squares algo-
rithm.
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Table 1: Confidence Intervals for (15)

p p̂i ĉi

k1 0.1126 0.0034
k2 0.0571 0.0022
D 102.4778 1.79

Table 2: Elimination of Parameters for (16)

k λmin(Îk
F ) |vj0 | j0

1 −0.37 · 10−11 0.89 3
2 −0.12 · 10−11 0.99 6
3 0.46.7 0.97 1
4 2578.3 1.0 5

Table 3: Confidence Intervals and Priority Levels for Overdetermined System
(16)

p p̂i ĉi Ĵk

k11 0.1328 0.0041 3
k12 0.8476 0.00065 4
k21 0.0314 0.00047 1
k22 0.0128 0.00094 4
D1 51.2396 0.96 4
D2 51.2396 0.96 2

Table 4: Priority Levels for Redundant System (17)

p p̂i Ĵk

k1 0.1126 2
k2 0.0571 2
D 102.4778 2
r 1.000 1
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4 Case Study: Isothermal Batch Reactor

By the first case study, we illustrate the computation of significance levels as out-
lined in Section 3. The corresponding identifiers in the EASY-FIT database are
BATCH F1/F2/F3/F4. The kinetic model describes a chemical reaction system of
an isothermal batch reactor, see Biegler, Damiano and Blau [9] or Majer [22],

ẋ1 = −k2x2x8 ,

ẋ2 = −k1x2x6 + k−1x10 − k2x2x8 ,

ẋ3 = k2x2x8 + k1x4x6 − 0.5k−1x9 ,

ẋ4 = −k1x4x6 + 0.5k−1x9 ,

ẋ5 = k1x2x6 + k−1x10 ,

ẋ6 = −k1x2x6 − k1x4x6 + k−1x10 + 0.5k−1x9 ,

0 = −x7 + x6 + x8 + x9 + x10 − Q+ ,

0 = −x8(K2 + x7) + K2x1 ,

0 = −x9(K3 + x7) + K3x3 ,

0 = −x10(K1 + x7) + K1x5 .

(18)

We have

Q+ = 0.0131 ,

Tb = 342.15 ,

k1 = exp
(
p1 −

(
1
T − 1

Tb

)
exp(p7)

)
,

k2 = exp
(
p2 −

(
1
T − 1

Tb

)
exp(p8))

)
,

k−1 = exp
(
p3 −

(
1
T − 1

Tb

)
exp(p9)

)
,

K1 = exp(−p4) ,

K2 = exp(−p5) ,

K3 = exp(−p6) ,

nine parameters to be estimated, and three experimental data sets obtained
under different temperatures and initial concentrations,

T x1(0) x2(0) x3(0) x4(0) x5(0) x6(0)
313.15 1.7066 8.3200 0.0100 0.0000 0.0 0.0131
340.15 1.6497 8.2200 0.0104 0.0017 0.0 0.0131
373.00 1.5608 8.3546 0.0082 0.0086 0.0 0.0131

In case of estimating only one data set, it is obvious that there are strong
internal dependencies between p1 and p7, p2 and p8, and p3 and p9. This is
reflected by the priorities listed in Table 5, where γ = 0.1. At least one of the
two corresponding priorities, i.e., of p1(= 3), p8(= 1), and p9(= 2), obtained
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T = 340.15 T = 313.15, T = 313.15
T = 340.15 T = 340.15,

T = 373
p p̂ Ĵk p̂ Ĵk p̂ Ĵk

p1 2.8 · 10−5 3 0.0 3 0.0 3
p2 1.6 6 1.1 4 1.1 3
p3 8.7 5 2.8 4 5.0 3
p4 34.2 6 21.6 4 24.9 3
p5 26.5 4 17.2 2 18.0 2
p6 32.5 6 20.1 4 23.2 3
p7 10.6 6 9.3 4 9.3 3
p8 8.6 1 8.9 4 8.9 3
p9 0.0002 2 0.04 1 0.04 1

Table 5: Parameter Values and Priorities for Isothermal Batch Reactor

the lowest possible value. The remaining parameters p2, p3, and p7 seem to be
identifiable.

To improve the number of parameters which can be identified, we add one
and then two additional data sets, see again Table 5. For three different data
sets, seven of nine parameters are considered as identifiable within one group
similar to the results obtained by Majer [22]. We also observe that the parameter
values get more and more stabilized, and some of them for three data sets are
quite far away from the parameter values obtained for one data set.

5 Experimental Design

Optimal experimental design is extensively discussed in the literature, see the
subsequent case studies and the references cited there. We present an approach
based on approximations of partial second derivatives by forward differences. It
is shown that a relatively large perturbation tolerances of the difference formula
lead to nevertheless sufficiently accurate solutions of the nonlinear optimization
problem to be solved.

Mathematical models describe the dynamical behavior of a system with the
goal to allow numerical estimation of model parameters a user is interested in.
These parameters identify the system under consideration, and are to be verified
by experiments.

However, the experimental design often depends on parameters which must
be set in advance to be able to measure certain output data of an experiment.
Examples are initial concentration of substrates, input feeds of a chemical re-
actor, temperature distributions, etc. In addition, our model may depend on
universal physical parameters like gas constant, absolute temperature, or grav-
itational constant.

To determine the experimental design parameters in an optimal way, we first
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have to find a suitable guess for the model parameters either from the literature
or some preliminary experiments. We have seen in the previous sections that
the covariance matrix determines the confidence region of the model parameters,
see (8). Since we have now additional freedom to design an experiment, we can
use the design parameters to minimize the volume of the corresponding ellipsoid
based on a suitable criterion.

To formalize the situation, we denote the model parameters by p ∈ IRnp and
the design parameters by q ∈ IRnq . In case of a dynamic, i.e., time dependent
parameter, for example a control function, we assume that the control function
is approximated by finitely many parameters.

Now we extend our model function h(p, t) by the design parameters, h(p, q, t),
and assume that we have a set of experimental time values tk, k = 1, . . ., l.
Moreover, we let

f(p, q) = (h(p, q, t1), . . . , h(p, q, tl))T

and denote by F (p, q) = ∇pf(p, q) the Jacobian matrix of f(p, q) subject to p
for a given q ∈ IRnq . For simplicity, we assume that F (p, q) has full rank for all
p and q.

A formal performance measure is available based on the covariance matrix
C(p, q) := I(p, q)−1, where I(p, q) := F (p, q)F (p, q)T denotes an approximation
of the Fisher information matrix, and where we omit a guess for the error
variances of measurements to simplify the notation. In other words, we assume
that all experimental data are measured with constant error. The volume of a
confidence region for a given model parameter p is given by

{p : (p − p)T I(p, q)(p − p) ≤ αnp} (19)

with a statistical parameter αnp , see (8).
Formula (19) describes an ellipsoid, and the goal is to minimize its volume on

the one hand, but on the other to prevent also degenerate situations where the
maximal and minimal eigenvalue drift away. This is to be achieved by adapt-
ing the design parameter q for a given model parameter p, which is obtained
either from a preliminary experiment, literature, or a reasonable guess. Possi-
ble criteria are available either for C(p, q) or I(p, q), respectively, depending on
the procedure how to measure or estimate the volume and the structure of the
ellipsoid. The most popular ones are

D : det(C(p, q))

A : trace(C(p, q))

A� : -trace(I(p, q))

E : λmin(I(p, q))

E� or C : λmin(I(p, q))/λmax(I(p, q))

Here λmin(I(p, q)) and λmax(I(p, q)) denote the minimal and maximal eigen-
values of I(p, q). For a more detailed discussion, see, e.g., Winer, Brown and
Michels [43] or Ryan [28].
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For our numerical implementation, we use the A-criterion, since the com-
putationally attractive confidence intervals by which the size of the ellipsoid is
estimated, take only the diagonal elements of the covariance matrix into account,
see (12). This leads for each p ∈ IRnp to the optimization problem

q ∈ IRnq :
min trace(C(p, q))

ql ≤ q ≤ qu ,
(20)

where we add additional bounds for the variables q.
There remains the question how to compute the derivatives of the objective

function
φ(q) := trace(C(p, q)) (21)

subject to q in an efficient way. Numerical differentiation of φ(q) subject to q
by a difference formula based on a previous numerical differentiation of h(p, q, t)
subject to p by another difference formula is unstable because of accumulation
of truncation errors. It is assumed that second order analytical mixed-partial
derivatives are not available. Thus, we try to find a reasonable compromise
which nevertheless leads to sufficiently stable procedure.

Partial differentiation formulae of the objective function of (20) subject to
qr, 1 ≤ r ≤ nq, are well-known from the literature, see e.g., Bauer et al. [5], and
are repeated for the matter of completeness,

∂

∂qr
φ(q) =

∂

∂qr
(trace(C(p, q)))

= trace
(

∂

∂qr
I(p, q)−1

)

= trace
(
−I(p, q)−1 ∂

∂qr
I(p, q) I(p, q)−1

)

= −trace
(

I(p, q)−1 ∂

∂qr

(
F (p, q)F (p, q)T

)
I(p, q)−1

)

= −trace
(

I(p, q)−1

(
∂

∂qr
F (p, q)F (p, q)T

+ F (p, q)
∂

∂qr
F (p, q)T

)
I(p, q)−1

)
.

(22)

There remains differentiation of the l × np matrix

∂

∂qr
F (p, q) =

∂

∂qr
∇pf(p, q)

=
(

∂2

∂qr∂pi
h(p, q, tk)

)
i=1,np;k=1,l

.

(23)
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Typically, the remaining mixed partial derivatives derivatives are provided
by automatic differentiation of the underlying ODE or DAE solver, respectively,
or by internal numerical differentiation. However, we proceed from more general
models and allow higher-index DAEs, switching points with variable transition
conditions, initial values depending on parameters, and especially from dynami-
cal systems where analytical derivatives of the right-hand side are not available.
Thus, the mixed partial derivatives of the model function h(p, q, t) subject to p
and q are approximated by forward differences

∂2

∂qr∂pi
h(p, q, tk) ≈ 1

εrεi
((h(p + εiei, q + εrer, tk) + h(p, q, tk))

− (h(p, q + εrer, tk) + h(p + εiei, q, tk)))

(24)

for k = 1, . . ., l and i = 1, . . ., np. Here, ei ∈ IRnp and er ∈ IRnq are the i-th and
r-th unit vectors, respectively, and εi, εr are suitable perturbation tolerances,
e.g., chosen by εi := max(ν, |pi|)ε and εr := max(ν, |qr|)ε. The tolerances ε > 0
and ν > 0 must be selected very carefully.

Equation (24) is written in a form to show that cancelation appears only
once. Since the evaluation of the objective function φ(q), i.e., of F (p, q) =
∇pf(p, q), requires also an approximation of first derivatives of the form

∂

∂pi
h(p, q, tk) ≈ 1

εi
(h(p + εiei, q, tk) − h(p, q, tk)) , (25)

only two additional evaluation of h are required to get the mixed second-order
derivatives (24).

The perturbation tolerance ε should not be too small. Depending on the
condition number of the information matrix, large values like ε = 0.01 or even
ε = 0.1 are applicable and can lead to stable solution processes subject to a
surprisingly small optimality criterion, as shown by the subsequent case studies.

The experimental design approach discussed above assumes that the time
values ti are known. However, there are very many situations where one would
like to know in advance their approximate number and also their optimal lo-
cations, to improve the confidence intervals of the parameters to be estimated,
and to reduce the number of time-consuming or expensive experiments.

Our idea is to proceed from a given set of time values which could be large
and dense, and to formulate an experimental design optimization problem as
before by introducing additional weights wk, k = 1, . . ., l. Thus, we replace
the k-th model function h(p, q, tk) by wkh(p, q, tk) with an additional factor wk,
k = 1, . . ., l, which is treated as an optimization variable of the optimum design
problem (20),

q ∈ IRnq , w ∈ IRl :

min trace(C(w, p, q))∑l
k=1 wk = 1 ,

ql ≤ q ≤ qu ,

τ ≤ wk ≤ 1 , k = 1, . . . , l .

(26)
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The covariance matrix C(w, p, q) := I(w, p, q)−1 depends now on additional
weights, I(w, p, q) := F (w, p, q)F (w, p, q)T , F (w, p, q) := ∇pf(w, p, q), and fi-
nally

f(w, p, q) := (w1h(p, q, t1), . . . , wlh(p, q, tl))T .

Note that for stability reasons, a small lower bound τ > 0 is introduced. We
have to prevent the possibility that weights become zero at an intermediate
iterate leading to an indefinite information matrix.

Corresponding partial derivatives of the objective function

φ(w, q) = trace(C(w, p, q))

subject to a weight wk are obtained from

∂

∂wk
φ(w, q) = −trace

(
I(w, p, q)−1

(
∂

∂wk
F (w, p, q)F (w, p, q)T

+ F (w, p, q)
∂

∂wk
F (w, p, q)T

)
I(w, p, q)−1

)
,

(27)

see (22), and from

∂

∂wk
F (w, p, q) =

∂

∂wk
∇pf(w, p, q)

=
(

∂2

∂wk∂pi
(wkh(p, q, tk))

)
i=1,np;k=1,l

=
(

∂

∂pi
h(p, q, tk)

)
i=1,np;k=1,l

,

(28)

confer also (23). Thus, we get the weight derivatives more or less for free, since
the partial derivatives subject to the model parameters are known from the
computation of the objective function.

6 Case Study: Unstructured Microbial Growth
Model

Banga et al. [2] consider a design problem based on an unstructured microbial
growth model to determine feed rate profiles in fed-batch bio-reactors. They
mention that numerical instabilities prevent application of gradient-based opti-
mization procedures. Instead, the use a stochastic search algorithm.

The process is described by two differential equations and the integration of
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an input function Fin(t),

ĊS = −σCX + Fin(t)
CSin − CS

V
, CS(0) = C0

S ,

ĊX = μCX − Fin(t)
CX

V
, CX(0) =

C0
X

V0
,

V̇ = Fin(t) , V (0) = V0 ,

(29)

where
μ = μm

CS

Kp + CS + C2
S/Ki

,

σ =
μ

YXS + m
,

V0 = V � CSin

CSin − C0
S

and m = 0.29, CSin = 500, YXS = 0.47, V � = 7, and μm = 2.1. Fin is a
piecewise linear input control function chosen very close to the optimal solution
found by Versyck [40], Kp, Ki are model parameters to be estimated, and initial
values C0

S , C0
X are design parameters. It turns out that Kp is very difficult to

estimate. Starting from some reasonable initial guesses Kp = 10, Ki = 0.1,
C0

S = 40, C0
X = 10, artificial measurements are generated and perturbed by a

uniform error of 5 %. Then, confidence intervals are computed for the design
parameters Kp and Ki. The corresponding data fitting problems are found in
the EASY-FIT database under the identifiers MICGROWX/Y/Z.

In the next step, we consider the feed controls at 19 grid points as addi-
tional design parameters, and 20 constraints are added to prevent that CS(t)
falls below zero. The perturbation tolerance for gradient approximations by
forward differences is set to ε = 0.01. NLPQLP needs 18 iterations to reduce
the performance criterion from 1.3 · 105 to 0.009 under termination accuracy
10−8. Optimal design parameters are the initial concentrations C0

S = 38.9 and
C0

X = 14.3, and the optimal feed curve is shown in Figure 1. In Figures 2 and
3 the corresponding state functions CS(t) and CX(t) are plotted.

After getting the optimal design parameters, the confidence intervals are
computed in the same way as for the starting values. Standard deviations are
reduced from 239.8 to 0.093 for Kp and from 0.0096 to 0.0022 for Ki. Moreover,
the correlation coefficient is reduced from 0.99 to 0.19.

In addition to the model and design parameters, also weights are to be com-
puted at an equidistant grid of 43 time values. Thus, the optimization problem
(26) gets 86 additional variables. NLPQLP computes a solution in seven it-
erations with termination accuracy 10−6. The total number of experiments is
reduced to 5, see Figure 4, and would have to be taken into account only for
CS . Model parameter Kp = 10 is estimated subject to a confidence level 0.16
and Ki = 0.1 subject to 0.00011. The location of the time values seems to be
at the critical points which determine the structure of the dynamical system.
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Figure 1: Control Function Fin(t)
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Figure 3: State Function CX(t)
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Figure 4: State Function CS(t) with Experimental Data

7 Case Study: Chemical Reaction of Urethane

A practically relevant example is studied by Bauer et al. [5], the reaction of
urethane, see URETHANX/W in the EASY-FIT database. The corresponding DAE
describing the reaction of phenylisocyanate (n1), butanol (n2), urethane (n3),
allophante (n4), and isocyanurate (n5) consists of three differential and three
algebraic equations of index 1,

ṅ3 = V (r1 − r2 + r3) , n3(0) = 0
ṅ4 = V (r2 − r3) , n4(0) = 0
ṅ5 = V r4 , n5(0) = 0
0 = n1 + n3 + 2n4 + 3n5 − na1 − n1ea(t) ,
0 = n2 + n3 + n4 − na2 − n2eb(t) ,
0 = n6 − na6 − n6ea(t) − n6eb(t) ,

(30)

where n6 denotes the solvent and

V =
∑6

i=1
Mini

ρi
, k1 = kref1 exp (−Ea1(1/T (t)− 1/Tref1)/R) ,

r1 = k1
n1n2

V 2
, k2 = kref2 exp (−Ea2(1/T (t)− 1/Tref2)/R) ,

r2 = k2
n1n3

V 2
, k3 = k2/kc ,

r3 = k3
n4

V
, k4 = kref4 exp (−Ea4(1/T (t)− 1/Tref4)/R) ,

r4 = k4
n2

1

V 2
, kc = kc2 exp (−dh2(1/T (t)− 1/Tg2)/R) .

Two input feeds are given in form of non-decreasing functions feeda(t) and
feedb(t), t ∈ [0, 80], and define n1ea(t) = na1eafeeda(t), n2eb(t) = na2ebfeedb(t),
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n6ea(t) = na6eafeeda(t), and n6eb(t) = na6ebfeedb(t). Mol ratios, active ingre-
dients, and the initial volume have to satisfy certain bound constraints,

0.1 ≤ MV1 ≤ 10 ,

0 ≤ MV2 ≤ 1000 ,

0 ≤ MV3 ≤ 10 ,

0 ≤ ga ≤ 0.8 ,

0 ≤ gaea ≤ 0.9 ,

0 ≤ gaeb ≤ 1 ,

0 ≤ Va ≤ 0.00075 ,

and are connected to the remaining parameters by analytical equations

MV1(na1 + na1ea) = na2 + na2eb ,

MV2na1 = na1ea ,

MV3na1 = na2eb ,

ga(na1M1 + na2M2 + na6M6) = na1M1 + na2M2; ,

gaea(na1eaM1 + na6eaM6) = na1eaM1 ,

gaeb(na2ebM2 + na6ebM6) = na2ebM2 ,

Va = na1M1/ρ1 + na2M2/ρ2 + na6M6/ρ6 .

which play the role of nonlinear equality constraints. Constant data are given
for

M1 = 0.11911 , ρ1 = 1095 , Tref1 = 363.16 ,

M2 = 0.07412 , ρ2 = 809 , Tref2 = 363.16 ,

M3 = 0.19323 , ρ3 = 1415 , Tref4 = 363.16 ,

M4 = 0.31234 , ρ4 = 1528 , Tg2 = 363.16 ,

M5 = 0.35733 , ρ5 = 1451 , R = 8.314 ,

M6 = 0.07806 , ρ6 = 1101 .

Model parameters to be estimated and for which some initial guesses are avail-
able, are

kref1 = 5 · 10−4 , Ea1 = 3.52 · 104 ,

kref2 = 8 · 10−8 , Ea2 = 8.5 · 104 ,

kref4 = 1 · 10−8 , Ea4 = 3.5 · 104 ,

kc2 = 1.7 · 10−1 , dh2 = 1.08 .
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Table 6: Design Parameters of the Urethane Problem

p initial final
MV1 1.0 0.24299
MV2 0.3 1.13686
MV3 0.3 0.25613
ga 0.75 0.80000

gaea 0.5 0.67401
gaeb 0.4 0.32820
Va 2.75 11.29776
na1 0.106 0.68736
na2 0.106 0.18089
na6 0.0876 0.30515

na1ea 0.0319 0.78145
na2eb 0.0319 0.17605
na6ea 0.0486 0.57685
na6eb 0.0454 0.34219

The two input feed controls and the time-dependent temperature are piecewise
linear functions defined at 10 grid points between t = 8 and t = 80. The corre-
sponding 30 support values are experimental design parameters together with
the bounded parameters MV1, MV2, MV3, ga, gaea, gaeb, Va and the parame-
ters na1, na2, na6, na1ea, na2eb, na6ea, and na6eb, which are coupled by a set of
seven equations mentioned above. To sum up, the whole optimization problem
consists of 8 model parameters, 47 design parameters, 8 nonlinear equality con-
straints, and 20 linear inequality constraints to satisfy monotonicity of the input
feeds. In addition, there are 10 time values between 0 and 80, four measurement
functions n1, n3, n4, and n5, and model variables are scaled to one.

The initial design is based on the data of Table 6. First, we suppose that the
parameters given above, are the result of ’real’ data fitting run. Experimental
data are generated at the 10 time values and random errors based on a uniform
distribution with relative deviation of 1 %. Subsequently, confidence intervals
subject to model parameters are computed as described in Section 1, see (12).
The results are listed in Table 7. The maximum standard deviation is more
than 800 %, i.e., it is practically impossible to estimate the model parameters
based on the given design data.

Our code is executed with ε = 10−2 for the approximation of partial deriva-
tives. The optimization routine NLPQLP of Schittkowski [31] terminates after
72 iterations reducing the performance criterion from 2.7×109 to 6.3 ·104, with
termination tolerance 10−8. Optimal design values are listed in Table 6. Cor-
responding state and control functions are shown in Figures 5 to 8. As for the
initial design, confidence intervals are computed for the design parameters, see
Table 7. Now all deviations are below 15 %.
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Table 7: Confidence Intervals for Urethane Problem

p initial (%) final (%) weights (%)
kref1 1.14 14.70 7.44
kref2 56.45 11.53 2.73
kref4 1.62 1.30 0.20
kc2 859.13 4.71 0.00058
Ea1 0.77 0.18 2.34
Ea2 1.24 1.95 0.95
Ea4 1.38 0.84 0.14
dh2 676.79 6.21 0.00026
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Figure 5: State Functions n1(t), n2(t), n3(t)
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Figure 6: State Functions n4(t), n5(t), n6(t)
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Table 8: Optimal Weights for Urethane Problem

i ti n1(ti) n3(ti) n4(ti) n5(ti)
1 12 0.183 0.267
2 16 0.0604
3 18 0.0073
4 20 0.0022 0.0018
5 26 0.0929
6 28 0.03 0.131 0.0111
7 30 0.171
8 32 0.074 0.036
9 34 0.0035

10 36
11 38 0.0123 0.0934 0.0025
12 40 0.0031
13 80 0.0068

We consider again the urethane problem because of its practical relevance,
see also (30). It is pointed out in Bauer et al. [5] that the experiments are
expensive and that it is highly desirable to reduce their number as much as
possible. We proceed from 40 equidistant time values between 0 and 80 for the
four measurable output functions n1, n3, n4, and n5, and try to reduce their
number to only the significant ones without loosing the desired identification
option as computed in the previous section. Note that all substrates are mea-
sured independently of each other, i.e., we have a total of l = 160 experimental
data from where relevant ones are to be extracted.

The optimization routine needs 132 iterations to reduce the performance
criterion from 1.65 · 1019 to 8.0 · 1014 under stopping tolerance 10−8. Nineteen
weights are above the lower bounds as shown in Table 8, and the corresponding
confidence levels are found in Table 7. They are significantly smaller than in case
of the 40 measurements taken in the previous section, and also the reduction of
experimental expenses is significant.

8 Conclusions

A couple of practical tools are proposed to compute optimal designs, to analyze
results of a data fitting run based on confidence intervals, and to get significance
levels for the estimated parameters. Of particular interest is the reduction of the
number of experimental measurements to be retrieved, by weight optimization.
The feasibility of this approach and the robustness of the numerical implemen-
tation are evaluated by some practical case studies.

The successive elimination of redundant parameters is very simple and does
not depend on the mathematical structure of the underlying model equations,
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i.e., the procedure is also applicable in situations different from those discussed
in this paper. The idea is only based on eigenvalue and eigenvector computations
which are easily performed by available standard routines. However, the Fisher
information matrix might become singular and highly ill-conditions requiring a
careful implementation of the code.

Experimental design is discussed to show that the generally accepted paradigm
of analytical derivatives is not always mandatory. At least for the two non-trivial
test cases we show that simple forward differences may be applied after some
safeguards. The stability of the solution depends on a careful choice of a toler-
ance for approximating derivatives by forward differences. More numerical tests
and analytical investigations are necessary to find out guidelines how to choose
the tolerance in advance in a proper way.
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