
NONLINEAR PROGRAMMING

K. Schittkowski, Ch. Zillober, Department of Mathematics, University of Bayreuth,
D-95440 Bayreuth, Germany

Keywords: nonlinear programming, optimization, sequential quadratic programming, sequen-
tial linear programming, sequential convex programming, penalty method, barrier method,
reduced gradient method, interior point method, optimality, Karush-Kuhn-Tucker condition,
convergence, large scale optimization

Contents:

1 Introduction
2 Optimality Conditions
2.1 Convexity and Constraint Qualification
2.2 Karush-Kuhn-Tucker Conditions
3 Optimization Algorithms
3.1 Quasi-Newton Methods for Unconstrained Optimization
3.2 Penalty and Barrier Methods
3.3 Augmented Lagrangian Methods
3.4 Interior Point Methods
3.5 Sequential Linear Programming
3.6 Sequential Quadratic Programming
3.7 Generalized Reduced Gradient Methods
3.8 Sequential Convex Programming
4 Large Scale Optimization
4.1 Limited Memory Quasi-Newton Updates
4.2 Sequential Linear Programming
4.3 Interior Point Methods
4.4 Sequential Quadratic Programming
4.5 Sequential Convex Programming

Glossary

Barrier function: Function that penalizes objective function when approaching boundary.
BFGS, DFP formula: Special quasi-Newton formulas. Constraint qualification: Regu-
larity condition required for characterizing optimality.
Feasible region: Set of points satisfying all constraints.
Karush-Kuhn-Tucker conditions: Optimality conditions for smooth, constrained optimiza-
tion problems based on the Lagrangian function.
Lagrangian function: Linear combination of objective and constraint functions for deriving

1

optimality conditions.
Line search: One-dimensional steplength calculation along a search direction.
Nonlinear program (NLP): Minimization of a nonlinear objective function subject to non-
linear equality and inequality constraints.
Penalty function: Function that penalizes violation of constraints.
Quasi-Newton-matrix: Approximation of Hessian matrix or its inverse by rank-2-updates.
Trust region: Limitation of new iterate for stabilization.

Summary

Nonlinear programming is a direct extension of linear programming, when we replace linear
model functions by nonlinear ones. Numerical algorithms and computer programs are widely
applicable and commercially available in form of black box software. However, to understand
how optimization methods work, how corresponding programs are organized, how the results
are to be interpreted, and, last not least, what are the limitations of the powerful mathemati-
cal technology, it is necessary to understand at least the basic terminology. Thus, we present
a brief introduction into optimization theory, in particular we introduce optimality criteria
for smooth problems. These conditions are extremely important to understand how mathe-
matical algorithms work. SThe most popular classes of constrained nonlinear programming
algorithms are introduced, i.e., penalty-barrier, interior point, augmented Lagrangian, sequen-
tial quadratic programming, sequential linear programming, generalized reduced gradient, and
sequential convex programming methods. Common features and methodological differences are
outlined. In particular we discuss extensions of these methods for solving large scale nonlinear
programming problems.

1 Introduction

Whenever a mathematical model is available to simulate a real-life application, a straightfor-
ward idea is to apply mathematical optimization algorithms for minimizing a so-called cost
function subject to constraints.

A typical example is the minimization of the weight of a mechanical structure under certain
loads and constraints for admissible stresses, displacements, or dynamic responses. Highly
complex industrial and academic design problems are solved today by means of nonlinear
programming algorithms without any chance to get equally qualified results by traditional
empirical approaches.

There exists a large variety of different types of optimization problems. Typically we distinguish
between

2

- linear programming,
- quadratic programming,
- constrained nonlinear programming,
- dynamic programming,
- least squares, min-max, L1-optimization,
- large scale optimization,
- semidefinite programming,
- non-smooth optimization,
- mixed-integer programming,
- optimal control,
- stochastic optimization,
- global optimization,
- multicriteria optimization,

to mention at least the main classes of problems for which the mathematical background is
well understood and for which numerical algorithms are available. In this review, we consider
only smooth, i.e. differentiable constrained nonlinear programming problems

min f(x) x ∈ Rn ,

gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . ,m ,

xl ≤ x ≤ xu .

(1)

Here, x is a n-dimensional parameter vector, also called the vector of design variables, f(x) the
objective function or cost function to be minimized under nonlinear equality and inequality
constraints given by gj(x), j = 1, . . . ,m. It is assumed that these functions are continuously
differentiable in Rn. The above formulation implies that we do not allow any discrete or
integer variables, respectively. But besides of this we do not require any further mathematical
structure of the model functions. For a discussion of non-smooth optimization problems see:
Non differentiable optimization.

To facilitate the subsequent notation, we assume that upper and lower bounds xu and xl are
not handled separately, i.e. that they are considered as general inequality constraints. Then
we get the nonlinear programming problem

min f(x) x ∈ Rn ,

gj(x) = 0, j = 1, . . . ,me ,

gj(x) ≥ 0, j = me + 1, . . . ,m

(2)

called now NLP in abbreviated form.

Although optimization software can be used in form of a black box, it is highly desirable to
understand at least the basic ideas of the mathematical analysis behind the problem. One
reason is that there are a lot of situations, which could prevent an algorithm from approaching
a solution in the correct way. Typically, an optimization algorithm breaks down with an error
message and the corresponding documentation contains a lot of technical phrases that must be
known to find a remedy. Another reason is that one would like to get an idea how accurate the
solution is obtained and whether it is possible to improve or verify an existing approximation.

3

For these reasons, we present a very brief outline of the optimization theory behind the pre-
sented algorithms, on a very elementary level. First we need some notations for the first
and second derivatives of a differentiable function. For mathematical basics see: Differential
Calculus. The gradient of a real-valued function f(x) is

∇f(x) :=
(
∂

∂x1

f(x), . . . ,
∂

∂xn

f(x)

)T

.

One further differentiation gives the Hessian matrix

∇2f(x) :=

(
∂2

∂xi∂xj

f(x)

)
i,j=1,...,n

of f(x). The Jacobian matrix of a vector-valued function F (x) = (f1(x), . . . , fl(x))
T is

∇F (x) :=
(
∂

∂xi

fj(x)

)
i=1,...,n;j=1,...,l

,

also written in the form

∇F (x) = (∇f1(x), . . . ,∇fl(x)) .

The fundamental tool for deriving optimality conditions and optimization algorithms is the
so-called Lagrangian function

L(x, u) := f(x)−
m∑

j=1

ujgj(x) (3)

defined for all x ∈ Rn and u = (u1, . . . , um)
T ∈ Rm. The purpose of L(x, u) is to link objective

function f(x) and constraints gj(x), j = 1, . . . ,m. The variables uj are called the Lagrangian
multipliers of the nonlinear programming problem.

Moreover, we denote by P the feasible region, i.e., the set of all feasible solutions

P := {x ∈ Rn : gj(x) = 0, j = 1, . . . ,me, gj(x) ≥ 0, j = me + 1, . . . ,m} .

The active inequality constraints with respect to x ∈ P are characterized by the index set

I(x) := {j : gj(x) = 0, me < j ≤ m} .

We discuss very briefly the main strategies behind a few classes of nonlinear programming
algorithms,

- penalty and barrier methods,

4

- augmented Lagrangian methods,

- interior point methods,

- sequential linear programming methods,

- sequential quadratic programming methods,

- generalized reduced gradient methods,

- sequential convex programming methods.

In particular, we will also discuss extensions of these methods to solve large scale optimization
problems.

Each implementation of a method in one of these subclasses, requires additional decisions
on a special variant or parameter selections, so that different codes of the same group may
possess completely different performance in practice. Moreover, there exist combinations of
the fundamental strategies making it even more difficult to classify nonlinear programming
algorithms. Comparative studies of codes for the general model have been performed in the
past. They proceed either from randomly generated test examples, or are based on artificial
or simple application problems reflecting special mathematical properties.

2 Optimality Conditions

2.1 Convexity and Constraint Qualification

In general we can only expect that an optimization algorithm computes a local minimum and
not a global one, i.e. a point x� with f(x�) ≤ f(x) for all x ∈ P ∩ U(x�), where U(x�) is
a suitable neighborhood of x�. However, each local minimum of a nonlinear programming
problem is a global one if the problem is convex, for example, if f is convex, gj linear for
j = 1, . . . ,me and gj concave for j = me + 1, . . . ,m. These conditions force the feasible region
P to be a convex set.

Definition 1 A function f : Rn → R is called convex, if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ Rn and λ ∈ (0, 1), and concave, if we replace ’≤’ by ’≥’ in the above inequality.

For a twice differentiable function f convexity is equivalent to the the property that ∇2f(x) is
positive semidefinite, i.e. zT∇2f(x)z ≥ 0 for all z ∈ Rn. Convexity of an optimization problem
is important mainly from the theoretical point of view, since many convergence, duality or other
theorems can be proved only for this special case. In practical situations, however, we have
hardly a chance to test whether a numerical problem is convex or not.

To be able to formulate the subsequent optimality conditions, we need a special assumption
to avoid irregular behavior of the feasible sets P at a local solution. We call it constraint

5

qualification, to be considered as some kind of regularity in more general form. In our situation
it is sufficient to proceed from the following definition:

Definition 2 A constraint qualification in x� ∈ P is satisfied, if the gradients of active con-
straints, i.e. the vectors ∇gj(x

�) for j ∈ {1, . . . ,me} ∪ I(x�), are linearly independent.

2.2 Karush-Kuhn-Tucker Conditions

For developing and understanding an optimization method, the subsequent theorems are es-
sential. They characterize optimality and are therefore also important for testing a current
iterate with respect to its convergence accuracy.

Theorem 1 (necessary second order optimality conditions) Let f and gj be twice con-
tinuously differentiable for j = 1, . . . ,m, x� a local minimizer of (2) and the constraint quali-
fication in x� be satisfied. Then there exists a u� ∈ Rm, such that

a) u�
j ≥ 0 , j = me + 1, . . . ,m ,

gj(x
�) = 0 , j = 1, . . . ,me ,

gj(x
�) ≥ 0 , j = me + 1, . . . ,m ,

∇xL(x
�, u�) = 0 ,

u�
jgj(x

�) = 0 , j = me + 1, . . . ,m

(4)

(first order condition),

b) sT∇2
xL(x

�, u�)s ≥ 0 (5)

for all s ∈ Rn with ∇gj(x
�)T s = 0, j ∈ {1, . . . ,me} ∪ I(x�) (second order condition).

Statement a) of the theorem is called the Karush-Kuhn-Tucker-condition. It says that at a
local solution the gradient of the objective function can be expressed by a linear combination of
gradients of active constraints. Moreover statement b) implies that the Lagrangian function is
positive semi-definite on the tangential space defined by the active constraints. For a discussion
of general duality-based optimality conditions see: Duality Theory.

It is not possible to omit the constraint qualification, as shown by the subsequent example.

Example 1 Let

f(x1, x2) := x1 ,

g1(x1, x2) := −x2 ≥ 0 ,

g2(x1, x2) := x2 − x2
1 ≥ 0 .

Since P = {(0, 0)}, x� = (0, 0) is the optimal solution. However, we have

∇xL(x
�, u�) =

(
1

u�
1 − u�

2

)
�=
(
0

0

)

6

showing that the Karush-Kuhn-Tucker-condition cannot be satisfied.

It is also possible to derive a very similar reverse optimality condition, that does not require
the constraint qualification.

Theorem 2 (sufficient second order optimality conditions) Let f and gj be twice con-
tinuously differentiable for j = 1, . . . ,m and x� ∈ Rn, u� ∈ Rm be given, so that the following
conditions are satisfied:

a) u�
j ≥ 0 , j = me + 1, . . . ,m ,

gj(x
�) = 0 , j = 1, . . . ,me ,

gj(x
�) ≥ 0 , j = me + 1, . . . ,m ,

∇xL(x
�, u�) = 0 ,

u�
jgj(x

�) = 0 , j = me + 1, . . . ,m

(first order condition),

b) sT∇2
xL(x

�, u�)s > 0 for all s ∈ Rn with s �= 0, ∇gj(x
�)T s = 0, j = 1, . . . ,me, and for all s

with ∇gj(x
�)T s = 0, j = me + 1, . . . ,m, and u�

j > 0 (second order condition).

Then x� is an isolated local minimum of f on P , i.e. there is a neighborhood U(x�) of x� with
f(x�) < f(x) for all x ∈ U(x�) ∩ P , x �= x�.

When reading a nonlinear programming textbook, one has to be aware of the fact that the
optimality conditions are often stated in a slightly different way. The formulation of a NLP
problem varies from author to author depending e.g. whether a minimum or a maximum is
searched, whether the inequality constraints use ≤ instead of ≥, or whether upper and lower
bounds are included. Also there exist different versions of the above statements, where the
assumptions are either more general or more specialized, respectively.

Now let us consider a few examples.

Example 2 Assume that n = 2, me = 0, m = 2, and that x� is an optimal solution with
active constraints g1 and g2. Then the gradient of the objective function must point into the
cone spanned by the gradients ∇g1(x�) and ∇g2(x�). In other words, there must exist two
multipliers u�

1 ≥ 0 and u�
2 ≥ 0 with

∇f(x�) = u�
1∇g1(x�) + u�

2∇g2(x�).

Example 3 Consider the simple NLP

f(x) := x2
1 + x2 ,

g1(x) := 9− x2
1 − x2

2 ≥ 0 ,

g2(x) := 1− x1 − x2 ≥ 0 .

7

We observe immediately that x� = (0,−3)T is the unique optimal solution of the convex opti-
mization problem. From the Karush-Kuhn-Tucker condition

∇xL(x, u) =

(
2x1

1

)
− u1

(−2x1

−2x2

)
− u2

(−1
−1
)
=

(
2x1(1 + u1) + u2

1 + 2u1x2 + u2

)
= 0

we get the multipliers u�
1 = 1/6 and u�

2 = 0. Moreover, the Hessian matrix of the Lagrangian
function

∇2
xL(x

�, u�) =

(
7/3 0
0 1/3

)

is positive definite.

3 Optimization Algorithms

3.1 Quasi-Newton Methods for Unconstrained Optimization

Historically all methods for constrained nonlinear programming are originated either from
linear programming or unconstrained optimization. Since linear programming techniques are
supposed to be well known (see: Linear Programming), we present a brief review on the most
powerful technique for unconstrained optimization based on quasi-Newton updates, since the
resulting tools are used by many of the more sophisticated algorithms for the constrained case.

We consider the unconstrained NLP

min f(x)

x ∈ Rn
(6)

with a differentiable function f(x) defined on Rn. Starting from a given value x0 ∈ Rn, we
construct a sequence

xk+1 := xk + αkdk (7)

of iterates for k = 0, 1, 2, . . ., where αk is a suitable steplength parameter discussed later.

In order to enforce convergence, we need a suitable search direction dk ∈ Rn. The first idea
could be, to apply the method of steepest descent

dk := −∇f(xk) .

However, numerical experiments and also theoretical analysis show, that we have to expect
a huge number of iterations even if f(x) is a simple, for example a quadratic function (see:
Numerical Analysis.

8

The next idea could be to apply Newton’s method

dk := −∇2f(xk)
−1∇f(xk) ,

for which an excellent quadratic convergence speed can be expected. This approach, however,
has the severe disadvantage that second derivatives must be computed. But we have to be
aware of the fact, that in very many of the more serious practical application problems we have
in mind, even the exact calculation of first derivatives is extremely expensive, inaccurate, or
only possible in approximated form. Thus, we have to look for a certain compromise in form
of an iterative algorithm

dk := −Hk∇f(xk) , (8)

where Hk ∈ Rn×n. We would like to find a formula using only first derivatives satisfying the
following conditions:

1. Hk is positive definite, when starting from a positive definite matrix H0.

2. Hk satisfies the so-called quasi-Newton condition

Hk+1(∇f(xk+1)−∇f(xk)) = xk+1 − xk . (9)

3. Hk+1 is computed from Hk, xk+1, xk, ∇f(xk+1), and ∇f(xk) by a rank-two-update, i.e.,

Hk+1 = Hk + βkuku
T
k + γkvkv

T
k (10)

with βk, γk ∈ R, uk, vk ∈ Rn.

4. If f(x) = 1
2
xTAx+ bTx, A positive definite, αk exact steplength, the search directions

d0, d1, . . . are conjugate w.r.t. A, i.e. d
T
i Adj = 0, 0 ≤ i < j.

Since the Hessian f(x�) is positive definite at a strict local minimizer x�, and since Hk is
supposed to approximate its inverse ∇2f(x�)−1, we require positive definite matrices Hk. A
particular advantage is, that we get descent directions dk because of

dT
k ∇f(xk) = −∇f(xk)

THk∇f(xk) < 0 . (11)

To motivate the quasi-Newton condition, consider a quadratic function

f(x) :=
1

2
xTAx− bTx+ c

with a positive definite matrix A. Then we get for Hk+1 := A
−1

Hk+1(∇f(xk+1)−∇f(xk)) = A−1(Axk+1 − b− Axk + b)
= xk+1 − xk .

(12)

9

Thus, the condition is satisfied showing that quasi-Newton matrices approximate the inverse
Hessian of f in the above sense. The rank-two update guarantees in addition a numerically
cheap procedure, since the complexity is in the order of n2. From the last condition we get
even finite convergence within n iterations in case of minimizing a quadratic function with
conjugate directions and exact steplength obtained by minimizing f(xk + αdk) over all α.

It is possible to get a whole family of formulas satisfying the above conditions besides of the
last one, since the exact steplength parameters are too expensive to be computed. The most
popular quasi-Newton-updates are the Davidon-Fletcher-Powell (DFP) formula

Hk+1 = Hk +
pkp

T
k

pT
k qk

− Hkqkq
T
kHk

qT
kHkqk

(13)

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula

Hk+1 = Hk +

(
1 +

qT
kHkqk
pT

k qk

)
pkp

T
k

pT
k qk

− 1

pT
k qk

(
pkq

T
kHk +Hkqkp

T
k

)
, (14)

where qk := ∇f(xk+1) − ∇f(xk) and pk := xk+1 − xk. Under certain regularity assumptions,
local superlinear convergence can be shown, i.e.

‖xk+1 − x�‖ ≤ γk‖xk − x�‖ (15)

for a sequence {γk} tending to zero, if we start sufficiently close to an optimal solution of (6).
Thus, the convergence speed is faster than the linear one of the steepest descent method, but
not as fast as the quadratic one of Newton’s method.

There exists a very interesting relationship between the DFP and the BFGS formula. If
Bk = H

−1
k , the inverse BFGS formula looks very similar to the DFP formula,

Bk+1 = Bk +
qkq

T
k

pT
k qk

− Bkpkp
T
kBk

pT
kBkpk

, (16)

where Bk = H−1
k for all k. Thus, both methods are also said to be dual in this sense. To

improve numerical stability, practical quasi-Newton algorithms often proceed from the inverse
BFGS formula or any stabilized variant, where dk is then computed from

Bkd = −∇f(xk) . (17)

The next question is how to find a suitable steplength αk in (7). An iterative approximation
of the exact minimizer

f(α�
k) = min{f(xk + αdk) : 0 < α <∞}

is too expensive, so that we accept αk as soon as a sufficient decrease along the descent direction
dk is obtained. By combining quadratic or cubic interpolation with some kind of steplength
reduction, the iterative process is stopped as soon as for example the Goldstein condition

0 < −µ1α∇f(xk)
Tdk ≤ f(xk)− f(xk + αdk) ≤ −µ2α∇f(xk)

Tdk (18)

10

or the Armijo condition

f(xk)− f(xk + αdk) ≥ −µ1α∇f(xk)
Tdk (19)

with 0 < µ1 < µ2 < 1 is satisfied. Also many other algorithms have been derived in the past.

3.2 Penalty and Barrier Methods

Penalty and barrier methods belong to the first attempts to solve constrained optimization
problems satisfactorily. The basic idea is to construct a sequence of unconstrained optimization
problems and to solve them by any standard minimization method, so that the minimizers of
the unconstrained problems converge to the solution of the constrained one. To simplify the
notation, we suppress equality constraints within this section.

To construct the unconstrained problems, so-called penalty terms are added to the objective
function which penalize f(x) whenever the feasible region is left. A factor rk controls the degree
of penalizing f . Proceeding from a sequence {rk} with rk → ∞ for k = 0, 1, 2, . . ., penalty
functions can be defined e.g. by

L(x, r) = f(x) + rk
m∑

j=1

(min(0, gj(x)))
2 , (20)

L(x, r) = f(x) + rk
m∑

j=1

|min(0, gj(x))| . (21)

These penalty functions allow violation of constraints and are called external ones.

Is is also possible to define barriers at the border of the feasible region. Then only strictly
feasible iterates are allowed in contrast to penalty functions. Barrier methods construct a se-
quence of unconstrained problems and a factor rk controls the weight of the barriers. However,
barrier terms cannot be defined for equality constraints. The most popular barrier functions
are

L(x, r) = f(x)− 1

rk

m∑
j=1

log(gj(x)) , (22)

L(x, r) = f(x) +
1

rk

m∑
j=1

1

gj(x)
. (23)

The barrier terms tend to infinity if a feasible iterate converges to the border of the feasible
region. By increasing the barrier parameter rk, the weight of the constraints is then decreased
step by step. A subsequent stepsize procedure has to ensure the feasibility of the iterates.
Moreover, certain shift terms can be added with the goal to attain a border more accurately
allowing also slightly violated constraints.

The unconstrained nonlinear programming problems are solved by any standard technique,
e.g. a quasi-Newton method combined with a line search. However, the line search must be
performed quite accurately due to the steep, narrow valleys created by the penalty or barrier
terms, respectively. The main disadvantage is, that the condition number of the Hessian matrix
of the penalty or barrier function tends to infinity when the parameter rk becomes too large.

11

3.3 Augmented Lagrangian Methods

Multiplier or augmented Lagrangian methods, respectively, try to avoid the disadvantage of
penalty and barrier algorithms, that too large penalty parameters lead to ill-conditioned un-
constrained subproblems. Thus, the objective function is augmented by a term including
information about the Lagrangian function,

L(x, u, r) := f(x) + 1

2

m∑
i=1

rj(gj(x)− vj)
2 (24)

where a = min(0, a) for a ∈ R, v ∈ Rm, and r ∈ Rm. Multipliers are approximated by rjvj.
A similar augmented Lagrangian function is

L(x, v, r) := f(x)−
m∑

j=1

{
(vjgj(x)− 1

2
rjgj(x)

2), if gj(x) ≤ vj/rj
1
2
v2

j/rj, otherwise
(25)

After solving an unconstrained minimization problem with one of the above objective functions,
the multiplier estimates are updated according to certain rules, e.g. by

vj := vj −min(gj(x), vj)

in the first case or

vj := vj −min(rjgj(x), vj)

in the second one for j = 1, . . . ,m. If there is no sufficient reduction of constraint violation,
then the penalty parameter vector r is increased as well, typically by a constant factor.

3.4 Interior Point Methods

Motivated by the successful development of new methods for linear programming (see: Linear
Programming), modern variants of barrier methods have been derived, so-called interior point
methods. Under mild conditions, the set of unconstrained minima of a barrier function forms a
smooth curve x(µ) for µ ∈ (0;∞) for convex optimization problems, the so-called central path.
A search direction dk at an iterate xk is computed by linear extrapolation along the tangent
of the central path.

To motivate the basic idea, we omit equality constraints for the matter of simplicity, and intro-
duce slack variables for the inequality restrictions, i.e. we proceed from an extended problem

min f(x) , x ∈ Rn, y ∈ Rm

g(x)− y = 0 ,

y ≥ 0 ,

(26)

12

where g(x) = (g1(x), . . . , gm(x))
T . The corresponding Karush-Kuhn-Tucker conditions subject

to the Lagrangian

L(x, y, u, v) = f(x)− (g(x)− y)Tu− vTy (27)

are

∇f(x)−∇g(x)u = 0 ,

u− v = 0 ,

g(x)− y = 0 ,

y ≥ 0 ,

v ≥ 0 ,

vjyj = 0 , j = 1, . . . ,m ,

(28)

where u = (u1, . . . , um)
T and v = (v1, . . . , vm)

T are the corresponding multiplier vectors.
Unfortunately, the application of Newton’s method to solve this set of nonlinear equations
directly, is prevented by the complementary condition vjyj = 0, which states that either a
slack variable must be zero or the corresponding multiplier value. Thus, we modify (28)
somewhat, replace the complementary condition by a weaker one of the form vjyj = µ with a
suitable positive regularity parameter µ and multiply the third equation with −1. Assuming
strict feasibility of v and y, i.e. v > 0 and y > 0, we obtain the equations

∇f(x)−∇g(x)v = 0 ,

y − g(x) = 0 ,

vjyj = µ , j = 1, . . . ,m .

(29)

On the other hand, we obtain exactly the same equations characterizing an optimal solution,
if we compute a stationary point of the logarithmic barrier function (22)

L(x, y, v, r) = f(x)− (g(x)− y)Tv − 1

r

m∑
j=1

log yj , (30)

with r := 1/µ and perform some trivial algebraic transformations. Here we penalize the
Lagrangian function and consider (30) as an augmented Lagrangian function, see also the
previous section.

Now let xk and yk be a current iterate, yk = (yk
1 , . . . , y

k
m) > 0 the current slack variables,

vk = (vk
1 , . . . , v

k
m) > 0 a multiplier estimate, and {µk} a series of given positive parameters

tending to zero. Then we apply Newton’s method to (29), the third set of equations written
as µk − vk

j y
k
j = 0, leading to

(∇2
xL(xk, vk) −∇g(xk)

−∇g(xk)
T −V −1

k Yk

)(
d

p

)
=

(
ak

bk

)
. (31)

In this case, L(xk, vk) denotes again the Lagrangian function of the original problem NLP. Vk

and Yk are diagonal matrices containing the coefficients of vk and yk, and the right-hand side

13

is defined by ak := −(∇f(xk) − ∇g(xk)vk) and bk := −(µkV
−1
k e − g(xk)), e ∈ Rm a vector

containing the value one in each component. If dk and pk denote the solution of the linear
system (31), a new iterate is obtained by

xk+1 = xk + dk , vk+1 = vk + pk .

The corresponding slack variables are computed from yk+1 = −V −1
k (Ykpk − µke).

Assuming that ∇2
xL

−1 exists, (31) can be reduced to

(∇g(xk)
T∇2

xL
−1(xk, vk)∇g(xk) + V

−1
k Yk)p = −∇g(xk)

T∇2
xL

−1(xk, vk)ak − bk (32)

or to

(∇g(xk)Y
−1
k Vk∇g(xk)

T +∇2
xL(xk, vk))d = −∇g(xk)Y

−1
k Vkbk + ak , (33)

respectively, by eliminating either d or p. System (32) is of dimension m×m, system (33) of
dimension n× n. Depending on the structure of (26), we solve either (31), (32), or (33).

The assumption that slack variables yk and their dual variables vk must remain strictly positive
during the iteration, is enforced by an adopted line search. The main advantage is, that
feasibility of the original variable xk is not required. Some of the coefficients converge to zero,
if the corresponding constraints become active. The barrier parameter µk is updated after each
step, not only after a complete unconstrained minimization cycle as for penalty methods.

3.5 Sequential Linear Programming

In many situations, sequential linear programming methods, respectively, are quite powerful,
for instance when trying to exploit special sparsity structures of the Jacobian of the constraints,
when solving problems with very many active constraints, and, in particular, when round-
off errors prevent the usage of higher order methods, say sequential quadratic programming
methods.

The idea is to approximate the nonlinear problem (2) by a linear one to get a new iterate.
Thus, the next iterate xk+1 = xk +dk is formulated with respect to solution dk of the following
linear programming problem

min ∇f(xk)
Td , d ∈ Rn

∇gj(xk)
Td+ gj(xk) = 0 , j = 1, . . . ,me ,

∇gj(xk)
Td+ gj(xk) ≥ 0 , j = me + 1, . . . ,m ,

‖ d ‖∞≤ δk .

(34)

The principle advantage is that the above problem can be solved by any standard linear
programming software, when we use the maximum norm ‖ . ‖∞ to restrict the choice of d.
However, we cannot guarantee to obtain a descent direction w.r.t. a suitable merit function,
and have to add certain trust regions or move limits. Additional bounds for the computation

14

of dk are set to avoid bad estimates particularly in the beginning of the algorithm, when the
linearization is too inaccurate. The bound δk has to be adapted during the algorithm. One
possible way is to consider the exact penalty function (21)

p(x, r) := f(x) +
me∑
i=1

rj|gj(x)|+
m∑

i=me+1

rj|min(0, gj(x))| (35)

defined for each x ∈ Rn and r = (r1, . . . , rm)
T . Moreover, we need its first order Taylor

approximation given by

pa(x, d, r) := f(x)+∇f(x)Td+
me∑
i=1

rj|gj(x)+∇gj(x)
Td)|+

m∑
i=1

rj|min(0, gj(x)+∇gj(x)
Td)|(36)

Then we consider the quotient of the actual and predicted change at an iterate xk and a solution
dk of the linear programming subproblem

qk :=
p(xk, r)− p(xk + dk, r)

p(xk, r)− pa(xk, dk, r)
(37)

where the penalty parameters are predetermined and must be sufficiently large, e.g. larger than
the expected multiplier values at an optimal solution. The update of δk is then performed by

δk+1 :=



δk/σ , if qk < ρ1

δkσ , if qk > ρ2

δk , otherwise
(38)

Here σ > 1 and 0 < ρ1 < ρ2 < 1 are constant numbers.

3.6 Sequential Quadratic Programming

Sequential quadratic programming methods are the standard general purpose algorithms for
solving smooth nonlinear optimization problems under the following assumptions:

• The problem is not too big.

• The functions and gradients can be evaluated with sufficiently high precision.

• The problem is smooth and well-scaled.

The key idea is to approximate also second order information to get a fast final convergence
speed. Thus, we define a quadratic approximation of the Lagrangian function L(x, u) and an
approximation of the Hessian matrix ∇2

xL(xk, uk) by a quasi-Newton matrix Bk. Then we get
the subproblem

min 1
2
dTBkd+∇f(xk)

Td , d ∈ Rn :

∇gj(xk)
Td+ gj(xk) = 0 , j = 1, . . . ,me ,

∇gj(xk)
Td+ gj(xk) ≥ 0 , j = me + 1, . . . ,m .

(39)

15

Usually, convergence is ensured by performing a line search, i.e. a steplength computation to
accept a new iterate xk+1 := xk+αkdk for an αk ∈ (0, 1] only if xk+1 satisfies a descent property
with respect to a solution dk of (39). In this case, we need also a simultaneous line search with
respect to the multiplier approximations called vk and define vk+1 := vk + αk(uk − vk) where
uk denotes the optimal Lagrangian multiplier of the quadratic programming subproblem (39).

The line search is performed with respect to a merit function

φrk
(α) := L(xk + αdk, vk + α(uk − vk), rk)

and a Goldstein (18) or Armijo (19) sufficient descent condition, where L(x, v, r) is a suitable
exact penalty or augmented Lagrangian function, e.g. of the type (21) or (25), respectively.
In this case also equality constraints must be taken into account accordingly. rk is a suitable
penalty parameter which must be sufficiently big to ensure that dk and vk are descent directions
for φrk

(α).

The update of the matrix Bk can be performed by standard techniques known from uncon-
strained optimization. In most cases, the BFGS-method is applied, see (16), starting from the
identity or any other positive definite matrix B0, and using

qk := ∇xL(xk+1, uk)−∇xL(xk, uk) ,
pk := xk+1 − xk .

(40)

Under some safeguards it is possible to guarantee that all matrices Bk remain positive defi-
nite. Among the most attractive features of sequential quadratic programming methods is the
superlinear convergence speed in the neighborhood of a solution, see (15).

3.7 Generalized Reduced Gradient Methods

By introducing artificial slack variables, the original nonlinear programming problem is con-
verted into a problem with nonlinear equality constraints and lower bounds for the slack
variables only. Thus, we proceed from a slightly more general problem

min f(z) , z ∈ Rn,

g(z) = 0 ,

zl ≤ z ≤ zu ,

(41)

where n = n +m. As in linear programming, the variables of z are classified into basic and
non-basic ones, now called y and x, respectively.

The basic idea is to satisfy the system of equations g(z) = 0 for all possible iterates. Let z =
(x, y) and y(x) be a solution of this system with respect to given variables x, i.e. g(x, y(x)) = 0,
and let F (x) := f(x, y(x)) be the so-called reduced objective function. Starting from a feasible
iterate and an initial set of basic variables, the algorithm performs a search step with respect
to the free variables, e.g. by a conjugate gradient or a quasi-Newton method. If the new
iterate violates constraints, then it is projected onto the feasible domain by a Newton-type
technique. If necessary, a line search is performed also combined with a restoration phase to

16

get feasible iterates. However, if the projection on the feasible domain P is not possible, or if a
basic variable violates a bound, one has to perform an exchange of basic variables as in linear
programming.

For evaluating a search direction in the reduced space, we need the gradient of the reduced
objective function F (x) with respect to the non-basic variables x, which is computed from

∇F (x) = ∇xf(x, y(x))−∇xg(x, y(x))∇yg(x, y(x))
−1∇yf(x, y(x)) . (42)

Generalized reduced gradient methods can be extended easily to problems with a special
structure in the constraints or very large problems. Moreover, they are related to sequen-
tial quadratic programming methods and there exist combinations of both approaches. Their
particular advantage is that they try to follow the feasible region as closely as possible.

3.8 Sequential Convex Programming

We assume for simplicity that only inequality constraints exist, i.e. that me = 0. Sequential
convex programming methods replace the nonlinear program NLP by a sequence of convex
subproblems. Given an iterate xk, the model functions of (2), i.e. f and gj, j = 1, . . . ,m,
are approximated by some functions fk and gjk at xk, j = 1, . . . ,m. The basic idea is to
linearize f and gj with respect to transformed variables (Ui − xi)

−1 and (xi −Li)
−1 depending

on the sign of the corresponding first partial derivative. Ui and Li are reasonable bounds and
adopted by the algorithm after each successful step. Also several other transformations have
been developed in the past.

The approach is motivated by applications in structural mechanical optimization, where these
methods have been invented. Especially certain displacement constraints become more linear
after the approximation.

The objective function f is replaced by

fk(x) := α
0
k +

∑
i∈I+

k

αi
k

Ui − xi

− ∑
i∈I−

k

αi
k

xi − Li

(43)

and constraints gj are approximated by

gjk(x) := β
0
jk +

∑
i∈J−

jk

βi
jk

Ui − xi

− ∑
i∈J+

jk

βi
jk

xi − Li

(44)

where αi
k and βi

jk are suitable constants depending on xk for j = 1,. . .,m and i = 0,. . .,n. The
index sets are defined by

I+
k = {i : 1 ≤ i ≤ n,

∂

∂xi

f(xk) ≥ 0}

17

and

I−k = {i : 1 ≤ i ≤ n,
∂

∂xi

f(xk) < 0} .

In a similar way J−
jk and J+

jk are defined. The approximations of f and gj, respectively, are of
first-order, i.e.

fk(xk) = f(xk) , gjk(xk) = gj(xk)

and

∇fk(xk) = ∇f(xk) , ∇gjk(xk) = ∇gj(xk)

for all j = 1, . . . ,m.

By an appropriate adoption of the objective function, strict convexity of fk(x) is guaranteed.
Thus, we get a convex and separable subproblem

min fk(x) , x ∈ Rn,

gjk(x) ≥ 0 ,

xk ≤ x ≤ xk ,

(45)

where xk = xk − ω(xk − L) and xk = xk − ω(xk − U), ω ∈ (0, 1), L := (L1, . . . , Ln)
T , and

U := (U1, . . . , Un)
T . The parameter ω is introduced to keep the solution away from the bounds.

The solution xk+1 of (45) is unique provided that the feasible domain is non-empty.

To stabilize convergence, a line search procedure can be added as e.g. for sequential quadratic
programming methods. Usually the subproblems are solved very efficiently by a dual approach,
where dense linear systems of dimension m×m must be considered.

4 Large Scale Optimization

The expression large scale nonlinear programming cannot be defined via explicit figures defin-
ing n and m. We denote a problem to be large, if it cannot be solved by any of the standard
approaches of the previous section because of storage requirements, round-off errors, or exces-
sive computing times. Large scale problems, however, often posses special structures as e.g.
sparse Jacobian or Hessian matrices. The exploitation of these properties is the main challenge
of large scale nonlinear programming.

For most nonlinear programming methods the ability to solve large scale problems depends on
the question how certain subproblems are defined and whether they can be solved efficiently.
Basically, all the approaches lead to the solution of large linear systems. The efficiency of a
nonlinear programming method for large scale applications depends mainly on the formulation
of these systems, for example whether they are sparse and whether sparsity in the Jacobian and
the Hessian matrices of the original problem can be exploited when solving the subproblems.
In this sense, large scale nonlinear programming is closely related to large scale linear algebra
(see: Numerical Linear Algebra).

18

4.1 Limited Memory Quasi-Newton Updates

We consider briefly so-called limited memory BFGS updates for unconstrained optimization,
which can be used also for solving large constrained problems.

The BFGS update scheme (14) suggests an update of a matrix Hk by storing a dense matrix
of dimension n× n. However, it is possible to store only the update vectors pk and qk and to
compute the search direction (8) from previous iterates. To limit the memory needed, we store
the last l of these vector pairs, where l is relatively small.

Equation (14) is equivalent to

Hk+1 = V
T
k HkVk + ρkpkp

T
k (46)

where ρk := (pT
k qk)

−1 and Vk := I − ρkpkq
T
k . Thus, the limited memory BFGS update can be

written as

Hk+1 = (V T
k . . . V

T
k−l+1)Hk−l+1(Vk−l+1 . . . Vk)

+ρk−l+1(V
T
k . . . V

T
k−l+2)pk−l+1p

T
k−l+1(Vk−l+2 . . . Vk)

+ρk−l+2(V
T
k . . . V

T
k−l+3)pk−l+2p

T
k−l+2(Vk−l+3 . . . Vk)

+ . . .+ ρkpkp
T
k .

(47)

To compute Hk+1, one needs to evaluate only vector-vector products and to store

(pk−l+1, qk−l+1), . . . , (pk, qk) .

A similar approach exists if the inverse BFGS formula (16) is preferred.

4.2 Sequential Linear Programming

In many situations the sequential linear programming method is very suitable for solving large
scale nonlinear programming problems, since large linear programs can be solved very efficiently
today for example by interior point methods. Because of the linearity of the approximation,
special sparsity patterns of the Jacobian matrix ∇g(xk) are passed to the constraint matrix of
the linear program directly.

A particular advantage of sequential linear programming methods is, that second order in-
formation is neither used nor updated. Thus, there is no hereditary of round-off errors in
case of inaccurate gradients, for example implied by numerical approximations. On the other
hand, convergence is at most linear making the method inefficient in case of highly nonlinear
problems with only a few active constraints.

4.3 Interior Point Methods

We have seen in the previous section, that the interior point method allows the formulation of
three different systems of linear equations of dimension n+m, m, or n, respectively. Thus we

19

choose (32) if there are more constraints than variables, (33) if there are more variables than
constraints, or (31) if we want to exploit sparsity patterns.

4.4 Sequential Quadratic Programming

The sequential quadratic programming method generates a sequence of quadratic problems
with matrices Bk of dimension n× n, which are usually dense. There are, however, extensions
to make the method also applicable for large problems. One possibility is to apply limited
memory BFGS updates as outlined before, combined with an iterative solver for the quadratic
subproblem.

Other possibilities are the application of the so-called range space method that is attractive
for problems with few constraints, or the null space method vice versa. All these approaches
can be combined with sparse update techniques and iterative linear system solvers to avoid
the computation and storage of decomposition matrices.

Sequential quadratic programming methods for problems with a large number of nonlinear
equality constraints are also available, known under the name reduced SQP method.

4.5 Sequential Convex Programming

The standard sequential convex programming method requires the solution of a sequence of
nonlinear convex and separable subproblems with dense matrices of dimension m×m.
Another approach to solve large convex subproblems is to apply the so-called primal-dual
interior point method as outlined in Section 3.8. First we note that the Hessian matrix of the
Lagrangian of the approximated subproblem is known analytically and is diagonal. Moreover,
a sparsity pattern of the Jacobian matrix of the original constraints is passed to the convex
subproblem (45) immediately and can be exploited.

As for sequential linear programming methods, there is no hereditary of round-off errors and the
algorithm solves large nonlinear problems that take advantage of the inverse approximations,
very efficiently.

Bibliography

Biegler, L.T., Coleman, T.F., Conn, A.R. and Santosa, F.N. eds. (1997). Large-Scale Opti-
mization with Applications, Part I, II, III. Springer, Heidelberg, New York. [Series on papers
about large scale optimization and applications]
Coleman, T.F. (1984). Large Sparse Numerical Optimization. Lecture Notes in Computer
Science, Vol. 165. Springer, Heidelberg, New York. [An overview of basic techniques for large
scale nonlinear programming]
Edgar, T.F. and Himmelblau, D.M. (1988). Optimization of Chemical Processes. McGraw
Hill, New York. [Optimization models and algorithms especially for chemical engineering]
Fiacco, A.V. and McCormick, G.P. (1968). Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. Wiley, New York. Reprinted by SIAM Publications (1990), Philadel-

20

phia. [The classical introduction to penalty and barrier methods]
Fletcher, R. (1987). Practical Methods of Optimization. John Wiley and Sons, New York.
[Introduction to theory and classical methods]
Gill, P.E., Murray, W. and Wright, M.H. (1992). Practical Optimization. Academic Press,
New York. [An overview of optimization methods from a numerical point of view]
Kaplan, W. (1999). Maxima and Minima with Applications. John Wiley, New York [Introduc-
tion into more theoretical aspects of nonlinear programming]
Luenberger, D. (1984). Linear and Nonlinear Programming. Addison-Wesley, Reading (MA).
[Introduction to theory and classical methods]
Mangasarian, O.L. (1969). Nonlinear Programming. McGraw-Hill, New York. Reprinted by
SIAM Publications (1994), Philadelphia. [An overview of the theoretical background of non-
linear programming, esp. optimality conditions]
Moré, J.J. andWright, S.J. (1993). Optimization Software Guide. SIAM Publications, Philadel-
phia. [A review on available nonlinear programming software]
Nesterov, Y.E. and Nemirovskii, A.S. (1994). Interior Point Polynomial Methods in Convex
Programming. SIAM Publications, Philadelphia. [A comprehensive study of the theoretical
background of interior point methods]
Nocedal, J. and Wright, S.J. (1999). Numerical Optimization. Springer, Heidelberg, New York.
[More modern introduction and review on nonlinear programming techniques]
Papalambros, P. and Wilde, D.J. (1988). Principles of Optimal Design. Cambridge University
Press, Cambridge. [Introduction with applications from mechanical engineering]
Wright, S.J. (1997). Primal-Dual Interior-Point Methods. SIAM publications, Philadelphia.
[An introduction to interior point methods for linear programming with extensions to nonlinear
programming]

21

