
The Cyclic Barzilai-Borwein Method for Unconstrained

Optimization∗

Yu-Hong Dai† William W. Hager ‡

Klaus Schittkowski § Hongchao Zhang ¶

May 31, 2005

Abstract

In the cyclic Barzilai-Borwein (CBB) method, the same BB stepsize is reused
for m consecutive iterations. It is proved that CBB is locally linearly convergent
at a local minimizer with positive definite Hessian. Numerical evidence indicates
that when m > n/2 ≥ 3, CBB is locally superlinearly convergent. In the special
case m = 3 and n = 2, it is proved that the convergence rate is no better than
linear, in general. An implementation of the CBB method, called adaptive CBB
(ACBB), combines a nonmonotone line search and an adaptive choice for the
cycle length m. In numerical experiments using the CUTEr [8] test problem
library, ACBB performs better than an existing BB gradient algorithm, while
it is competitive with the well-known PRP+ conjugate gradient algorithm.

Key words: unconstrained optimization, gradient method, convex quadratic
programming, nonmonotone line search.

AMS(MOS) subject classifications. 90C30.

∗First author supported by the Alexander von Humboldt Foundation under grant CHN/1112740
STP and Chinese National Science Foundation grants 10171104 and 40233029. Second and fourth
authors supported by U. S. National Science Foundation Grant No. 0203270.

†State Key Laboratory of Scientific and Engineering Computing, Institute of Computational
Mathematics and Scientific/Engineering computing, Academy of Mathematics and System Sciences,
Chinese Academy of Sciences, PO Box 2719, Beijing 100080, PR China. Email: dyh@lsec.cc.ac.cn

‡Department of Mathematics, University of Florida, Gainesville, FL 32611, USA. Email:
hager@math.ufl.edu

§Department of Computer Science, University of Bayreuth, 95440 Bayreuth, Germany. Email:
klaus.schittkowski@uni-bayreuth.de

¶Department of Mathematics, University of Florida, Gainesville, FL 32611, USA. Email:
hzhang@math.ufl.edu

1

1 Introduction

In this paper, we develop a cyclic Barzilai-Borwein (BB) gradient type method for
solving an unconstrained optimization problem

min f(x), x ∈ <n, (1.1)

where f is continuously differentiable. Gradient methods start from an initial point
x0 and generate new iterates by the rule

xk+1 = xk − αkgk, (1.2)

k ≥ 0, where gk = ∇f(xk) is the gradient, viewed as a column vector, and αk is a
stepsize computed by some line search algorithm.

In the steepest descent (SD) method, which can be traced back to Cauchy [7],
the “exact steplength” is given by

αk ∈ argmin
α∈<

f(xk − αgk). (1.3)

It is well-known that steepest descent can be very slow when the Hessian of f is
ill-conditioned at a local minimum (see Akaike [1] and Forsythe [22]). In this case,
the iterates slowly approach the minimum in a zigzag fashion. On the other hand, it
has been shown that if the exact steepest descent step is reused in a cyclic fashion,
then the convergence is accelerated. Given an integer m ≥ 1, which we call the cycle
length, cyclic steepest descent can be expressed:

αmk+i = αSD
mk+1 for i = 1, . . . ,m, (1.4)

k = 0, 1, . . ., where αSD
k is the exact steplength given by (1.3). Formula (1.4) is

first proposed in [23], while the particular choice m = 2 is also investigated in [10]
and [36]. The analysis in [11] shows that if m > n

2 , cyclic steepest descent is likely
R-superlinearly convergent. Hence, steepest descent is accelerated when the stepsize
is repeated.

In this paper, we develop a cyclic BB method. The basic idea of Barzilai and
Borwein [2] is to regard the matrix D(αk) =

1
αk

I as an approximation of the Hessian

∇2f(xk) and impose a quasi-Newton property on D(αk):

αk = argmin
α∈<

‖D(α)sk−1 − yk−1‖2, (1.5)

where sk−1 = xk − xk−1, yk−1 = gk − gk−1, and k ≥ 2. The proposed stepsize,
obtained from (1.5), is

αBB
k =

sT

k−1sk−1

sT

k−1yk−1
. (1.6)

Other possible choices for the stepsize αk include [10, 13, 16, 17, 23, 27, 36, 37]. In
this paper, we refer to (1.6) as the Barzilai-Borwein (BB) formula. The gradient
method (1.2) corresponding to the BB stepsize (1.6) is called the BB method.

2

Due to their simplicity, efficiency, and low memory requirements, BB-like meth-
ods have been used in many applications. Glunt, Hayden, and Raydan [25] present
a direct application of the BB method in chemistry. Birgin et al. [3] use a globalized
BB method to estimate the optical constants and the thickness of thin films, while
in Birgin et al. [5] further extensions are given, leading to more efficient projected
gradient methods. Liu and Dai [31] provide a powerful scheme for solving noisy un-
constrained optimization problems by combining the BB method and a stochastic
approximation method. The projected BB-like method turns out to be very useful
in machine learning for training support vector machines (see Serafini et al [37] and
Dai and Fletcher [13]). Empirically, good performance is observed on a wide variety
of classification problems.

The superior performance of cyclic steepest descent, compared to the ordinary
steepest descent, as shown in [11], leads us to consider the cyclic BB method (CBB):

αmk+i = αBB
mk+1 for i = 1, . . . ,m, (1.7)

where m ≥ 1 is again the cycle length. An advantage of the CBB method is that
for general nonlinear functions, the stepsize is given by the simple formula (1.5) in
contrast to the nontrivial optimization problem associated with the steepest descent
step (1.3).

In [23] it is shown that when f is a strongly convex quadratic, CBB is at least
linearly convergent. In Section 2 we prove local R-linear convergence for the CBB
method at a local minimizer of a general nonlinear function. In Section 3 numerical
evidence for strongly convex quadratic functions indicates that the convergence is
superlinear if m > n/2 ≥ 3. In the special case m = 3 and n = 2, we prove that the
convergence is at best linear, in general.

In Section 4 we propose an adaptive method for computing an appropriate cycle
length, and we obtain a globally convergent nonmonotone scheme by using a modified
version of the line search developed in [18]. This new line search, an adaptive
analogue of Toint’s scheme [38] for trust region methods, accepts the original BB
stepsize more often than does Raydan’s [34] strategy for globalizing the BB method.
We refer to Raydan’s globalized BB implementation as the GBB method. Numerical
comparisons with the PRP+ algorithm and with the SPG2 algorithm [5] (one version
of the GBB method) are given in Section 4 using the CUTEr test problem library
[8].

2 Local linear convergence

In this section we prove R-linear convergence for the CBB method. In [31], it is
proposed that R-linear convergence for the BB method applied to a general nonlinear
function could be obtained from the R-linear convergence results for a quadratic by
comparing the iterates associated with a quadratic approximation to the general
nonlinear iterates. In our R-linear convergence result for the CBB method, we make
such a comparison.

3

The CBB iteration can be expressed as

xk+1 = xk − αkgk, (2.8)

where

αk =
sT
i si

sT
i yi

, i = ν(k), and ν(k) = mb(k − 1)/mc, (2.9)

k ≥ 1. For r ∈ <, brc denotes the largest integer j such that j ≤ r. We assume
that f is two times Lipschitz continuously differentiable in a neighborhood of a local
minimizer x∗ where the Hessian H = ∇2f(x∗) is positive definite. The second-order
Taylor approximation f̂ to f around x∗ is given by

f̂(x) = f(x∗) +
1

2
(x− x∗)TH(x− x∗). (2.10)

We will compare an iterate xk+j generated by (2.8) to a CBB iterate x̂k,j asso-

ciated with f̂ and the starting point x̂k,0 = xk. More precisely, we define:

x̂k,0 = xk

x̂k,j+1 = x̂k,j − α̂k,j ĝk,j , j ≥ 0, (2.11)

where

α̂k,j =















αk if ν(k + j) = ν(k)

ŝT
i ŝi

ŝT
i ŷi

, i = ν(k + j), otherwise.

Here ŝk+j = x̂k,j+1 − x̂k,j , ĝk,j = H(x̂k,j − x∗), and ŷk+j = ĝk,j+1 − ĝk,j .
We exploit the following result established in [10, Thm. 3.2]:

Lemma 1. Let {x̂k,j : j ≥ 0} be the CBB iterates associated with the starting

point x̂k,0 = xk and the quadratic f̂ in (2.10), where H is positive definite. Given

two arbitrary constants C2 > C1, there exists a positive integer M with the following

property: For any k ≥ 1 and

α̂k,0 ∈ [C1, C2], (2.12)

‖x̂k,M − x∗‖ ≤ 1

2
‖x̂k,0 − x∗‖.

In our next lemma, we estimate the distance between x̂k,j and xk+j . Let Bρ(x)
denote the ball with center x and radius ρ. Since f is two times Lipschitz continu-
ously differentiable and ∇2f(x∗) is positive definite, there exists positive constants
ρ, λ, and Λ2 > Λ1 such that

‖∇f(x)−H(x− x∗)‖ ≤ λ‖x− x∗‖2 for all x ∈ Bρ(x
∗) (2.13)

and

Λ1 ≤
yT∇2f(x)y

yTy
≤ Λ2 for all y ∈ <n and x ∈ Bρ(x

∗). (2.14)

4

Notice that if xi and xi+1 ∈ Bρ(x
∗), then the fundamental theorem of calculus

applied to yi = gi+1 − gi yields

1

Λ2
≤ sT

i si

sT
i yi

≤ 1

Λ1
. (2.15)

Hence, when the CBB iterates lie in Bρ(x
∗), the condition (2.12) of Lemma 1 is

satisfied with C1 = 1/Λ2 and C2 = 1/Λ1. If we define g(x) = ∇f(x), then the
fundamental theorem of calculus can also be used to deduce that

‖g(x)‖ = ‖g(x)− g(x∗)‖ ≤ Λ2‖x− x∗‖ (2.16)

for all x ∈ Bρ(x
∗).

Lemma 2. Let {xj : j ≥ k} be a sequence generated by the CBB method applied

to a function f with a local minimizer x∗, and assume that the Hessian H = ∇2f(x∗)
is positive definite with (2.14) satisfied. Then for any fixed positive integer M , there

exist positive constants δ and γ with the following property: For any xk ∈ Bδ(x
∗),

αk ∈ [Λ−12 ,Λ−11], l ∈ [0,M] with

‖x̂k,j − x∗‖ ≥ 1

2
‖x̂k,0 − x∗‖ for all j ∈ [0, l − 1], (2.17)

we have

xk+j ∈ Bρ(x
∗) and ‖xk+j − x̂k,j‖ ≤ γ‖xk − x∗‖2 (2.18)

for all j ∈ [0, l].

Proof. Throughout the proof, we let c denote a generic constant, which depends
on fixed constants such as M or Λ1 or Λ2 or λ, but not on either k or the choice of
xk ∈ Bδ(x

∗) or the choice of αk ∈ [Λ−12 ,Λ−11]. To facilitate the proof, we also show
that

‖g(xk+j)− ĝ(x̂k,j)‖ ≤ c‖xk − x∗‖2, (2.19)

‖sk+j‖ ≤ c‖xk − x∗‖, (2.20)

|αk+j − α̂k,j | ≤ c‖xk − x∗‖, (2.21)

for all j ∈ [0, l], where ĝ(x) = ∇f̂(x) = H(x− x∗).
The proof of (2.18)–(2.21) is by induction on l. For l = 0, we take δ = ρ. The

relation (2.18) is trivial since x̂k,0 = xk. By (2.13), we have

‖g(xk)− ĝ(x̂k,0)‖ = ‖g(xk)− ĝ(xk)‖ ≤ λ‖xk − x∗‖2,

which gives (2.19). Since δ = ρ and xk ∈ Bδ(x
∗), it follows from (2.16) that

‖sk‖ = ‖αkgk‖ ≤
Λ2

Λ1
‖xk − x∗‖,

which gives (2.20). The relation (2.21) is trivial since α̂k,0 = αk.

5

Now, proceeding by induction, suppose that there exist L ∈ [1,M) and δ > 0
with the property that if (2.17) holds for any l ∈ [0, L − 1], then (2.18)–(2.21) are
satisfied for all j ∈ [0, l]. We wish to show that for a smaller choice of δ > 0, we
can replace L by L+1. Hence, we suppose that (2.17) holds for all j ∈ [0, L]. Since
(2.17) holds for all j ∈ [0, L− 1], it follows from the induction hypothesis and (2.20)
that

‖xk+L+1 − x∗‖ ≤ ‖xk − x∗‖+
L
∑

i=0

‖sk+i‖

≤ c‖xk − x∗‖. (2.22)

Consequently, by choosing δ smaller if necessary, we have xk+L+1 ∈ Bρ(x
∗) when

xk ∈ Bδ(x
∗).

By the triangle inequality,

‖xk+L+1 − x̂k,L+1‖
= ‖xk+L − αk+Lg(xk+L)− [x̂k,L − α̂k,Lĝ(x̂k,L)]‖
≤ ‖xk+L − x̂k,L‖+ |α̂k,L|‖g(xk+L)− ĝ(x̂k,L)‖

+|αk+L − α̂k,L|‖g(xk+L)‖. (2.23)

We now analyze each of the terms in (2.23). By the induction hypothesis, the bound
(2.18) with j = L holds, which gives

‖xk+L − x̂k,L‖ ≤ c‖xk − x∗‖2. (2.24)

By the definition of α̂, either α̂k,L = αk ∈ [Λ−12 ,Λ−11], or

α̂k,L =
ŝT
i ŝi

ŝT
i ŷi

, i = ν(k + L).

In this latter case,
1

Λ2
≤ ŝT

i ŝi

ŝT
i Hŝi

=
ŝT
i ŝi

ŝT
i ŷi

≤ 1

Λ1
.

Hence, in either case α̂k,L ∈ [Λ−12 ,Λ−11]. It follows from (2.19) with j = L that

|α̂k,L|‖g(xk+L)− ĝ(x̂k,L)‖ ≤ 1

Λ1
‖g(xk+L)− ĝ(x̂k,L)‖

≤ c‖xk − x∗‖2. (2.25)

Also, by (2.21) with j = L and (2.16), we have

|αk+L − α̂k,L|‖g(xk+L)‖ ≤ c‖xk − x∗‖‖xk+L − x∗‖.

Utilizing (2.22) (with L replaced by L− 1) gives

|αk+L − α̂k,L|‖g(xk+L)‖ ≤ c‖xk − x∗‖2. (2.26)

6

We combine (2.23)–(2.26) to obtain (2.18) for j = L+1. Notice that in establishing
(2.18), we exploited (2.19)–(2.21). Consequently, to complete the induction step,
each of these estimates should be proved for j = L+ 1.

Focusing on (2.19) for j = L+ 1, we have

‖g(xk+L+1)− ĝ(x̂k,L+1)‖
≤ ‖g(xk+L+1)− ĝ(xk+L+1)‖+ ‖ĝ(xk+L+1)− ĝ(x̂k,L+1)‖
= ‖g(xk+L+1)− ĝ(xk+L+1)‖+ ‖H(xk+L+1 − x̂k,L+1)‖
≤ ‖g(xk+L+1)−H(xk+L+1 − x∗)‖+ Λ2‖xk+L+1 − x̂k,L+1‖
≤ ‖g(xk+L+1)−H(xk+L+1 − x∗)‖+ c‖xk − x∗‖2,

since ‖H‖ ≤ Λ2 by (2.14). The last inequality is due to (2.18) for j = L+ 1, which
was just established. Since we chose δ small enough that xk+L+1 ∈ Bρ(x

∗) (see
(2.22), (2.13) implies that

‖g(xk+L+1)−H(xk+L+1 − x∗)‖ ≤ λ‖xk+L+1 − x∗‖2 ≤ c‖xk − x∗‖2.

Hence, ‖g(xk+L+1)−ĝ(x̂k,L+1)‖ ≤ c‖xk−x∗‖2, which establishes (2.19) for j = L+1.
Observe that αk+L+1 either equals αk ∈ [Λ−12 ,Λ−11], or (sT

i si)/(s
T
i yi), where

k + L ≥ i = ν(k + L + 1) > k. In this latter case, since xk+j ∈ Bρ(x
∗) for

0 ≤ j ≤ L+ 1, it follows from (2.15) that

αk+L+1 ≤
1

Λ1
.

Combining this with (2.16) and the bound (2.20) for j ≤ L, we obtain

‖sk+L+1‖ = ‖αk+L+1g(xk+L+1)‖ ≤
Λ2

Λ1
‖xk+L+1 − x∗‖

≤ Λ2

Λ1



‖xk − x∗‖+
L
∑

j=0

‖sk+j‖




≤ c‖xk − x∗‖.

Hence, (2.20) is established for j = L+ 1.
Finally, we focus on (2.21) for j = L+ 1. If ν(k + L+ 1) = ν(k), then α̂k,L+1 =

αk+L+1 = αk, so we are done. Otherwise, ν(k + L+ 1) > ν(k), and there exists an
index i ∈ (0, L] such that

αk+L+1 =
sT

k+isk+i

sT

k+iyk+i
and α̂k,L+1 =

ŝT

k+iŝk+i

ŝT

k+iŷk+i
.

By (2.18) and the fact that i ≤ L, we have

‖sk+i − ŝk+i‖ ≤ c‖xk − x∗‖2.

7

Combining this with (2.20) gives

|sT

k+isk+i− ŝT

k+iŝk+i| =
∣

∣

∣2sT

k+i(sk+i − ŝk+i)− ‖ŝk+i − sk+i‖2
∣

∣

∣ ≤ c‖xk−x∗‖3. (2.27)

Since α̂k,i ∈ [Λ−12 ,Λ−11], we have

‖ŝk+i‖ = ‖α̂k,iĝk,i‖ ≥
1

Λ2
‖H(x̂k,i − x∗)‖

≥ Λ1

Λ2
‖x̂k,i − x∗‖.

Furthermore, by (2.17) it follows that

‖ŝk+i‖ ≥
Λ1

2Λ2
‖x̂k,0 − x∗‖ = Λ1

2Λ2
‖xk − x∗‖. (2.28)

Hence, combining (2.27) and (2.28) gives

∣

∣

∣

∣

∣

1− sT

k+isk+i

ŝT

k+iŝk+i

∣

∣

∣

∣

∣

=
|sT

k+isk+i − ŝT

k+iŝk+i|
ŝT

k+iŝk+i
≤ c‖xk − x∗‖. (2.29)

Now let us consider the denominators of αk+i and α̂k,i. Observe that

sT

k+iyk+i − ŝT

k+iŷk+i = sT

k+i(yk+i − ŷk+i) + (sk+i − ŝk+i)
Tŷk+i

= sT

k+i(yk+i − ŷk+i) + (sk+i − ŝk+i)
THŝk+i. (2.30)

By (2.18) and (2.20), we have

|(sk+i − ŝk+i)
THŝk+i| = |(sk+i − ŝk+i)

THsk+i − (sk+i − ŝk+i)
TH(sk+i − ŝk+i)|

≤ c‖xk − x∗‖3. (2.31)

Also, by (2.19) and (2.20), we have

|sT

k+i(yk+i− ŷk+i)| ≤ ‖sk+i‖(‖gk+i+1− ĝk,i+1‖+‖gk+i− ĝk,i‖) ≤ c‖xk−x∗‖3. (2.32)

Combining (2.30)–(2.32) yields

sT

k+iyk+i − ŝT

k+iŷk+i ≤ c‖xk − x∗‖3. (2.33)

Since xk+i and xk+i+1 ∈ Bρ(x
∗), it follows from (2.14) that

sT

k+iyk+i = sT

k+i(gk+i+1 − gk+i) ≥ Λ1‖sk+i‖2 = Λ1|αk+i|2‖gk+i‖2. (2.34)

By (2.15) and (2.14), we have

|αk+i|2‖gk+i‖2 ≥
1

Λ2
2

‖gk+i‖2 =
1

Λ2
2

‖g(xk+i)− g(x∗)‖2 ≥ Λ2
1

Λ2
2

‖xk+i − x∗‖2. (2.35)

8

Finally, (2.17) gives

‖xk+i − x∗‖2 ≥ 1

4
‖xk − x∗‖2. (2.36)

Combining (2.34)–(2.36) yields

sT

k+iyk+i ≥
Λ3
1

4Λ2
2

‖xk − x∗‖2. (2.37)

Combining (2.33) and (2.37) gives

∣

∣

∣

∣

∣

1− ŝT

k+iŷk+i

sT

k+iyk+i

∣

∣

∣

∣

∣

=
|sT

k+iyk+i − ŝT

k+iŷk+i|
sT

k+iyk+i
≤ c‖xk − x∗‖. (2.38)

Together, (2.29) and (2.38) yield

|αk+L+1 − α̂k,L+1| =

∣

∣

∣

∣

∣

sT

k+isk+i

sT

k+iyk+i
− ŝT

k+iŝk+i

ŝT

k+iŷk+i

∣

∣

∣

∣

∣

= α̂k,L+1

∣

∣

∣

∣

∣

1−
(

sT

k+isk+i

ŝT

k+iŝk+i

)(

ŝT

k+iŷk+i

sT

k+iyk+i

)∣

∣

∣

∣

∣

≤ 1

Λ1

∣

∣

∣

∣

∣

1−
(

sT

k+isk+i

ŝT

k+iŝk+i

)(

ŝT

k+iŷk+i

sT

k+iyk+i

)∣

∣

∣

∣

∣

≤ c‖xk − x∗‖.

This completes the proof of (2.18)–(2.21). 2

Theorem 1. Let x∗ be a local minimizer of f , and assume that the Hessian

∇2f(x∗) is positive definite. Then there exist positive constants δ and γ, and a

constant c < 1 with the property that for all starting points x0, x1 ∈ Bδ(x
∗), x0 6= x1,

the CBB iterates generated by (2.8)–(2.9) satisfy

‖xk − x∗‖ ≤ γck‖x1 − x∗‖.

Proof. Let M > 0 be the integer given in Lemma 1, corresponding to C1 = Λ−11

and C2 = Λ−12 , and let δ1 and γ1 denote the constants δ and γ given in Lemma 2.
Let γ2 denote the constant c in (2.20). In other words, these constant δ1, γ1, and
and γ2 have the property that whenever ‖xk − x∗‖ ≤ δ1, αk ∈ [Λ−12 ,Λ−11], and

‖x̂k,j − x∗‖ ≥ 1

2
‖x̂k,0 − x∗‖ for 0 ≤ j ≤ l − 1 < M,

we have

‖xk+j − x̂k,j‖ ≤ γ1‖xk − x∗‖2, (2.39)

‖sk+j‖ ≤ γ2‖xk − x∗‖, (2.40)

xk+j ∈ Bρ(x
∗), (2.41)

9

for all j ∈ [0, l]. Moreover, by the triangle inequality and (2.40), it follows that

‖xk+j − x∗‖ ≤ (Mγ2 + 1)‖xk − x∗‖
= γ3‖xk − x∗‖, γ3 = (Mγ2 + 1), (2.42)

for all j ∈ [0, l]. We define

δ = min{δ1, ρ, (4γ1)−1}. (2.43)

For any x0 and x1 ∈ Bδ(x
∗), we define a sequence 1 = k1 < k2 < . . . in the

following way: Starting with the index k1 = 1, let j1 > 0 be the smallest integer
with the property that

‖x̂k1,j1 − x∗‖ ≤ 1

2
‖x̂k1,0 − x∗‖ = 1

2
‖x1 − x∗‖.

Since x0 and x1 ∈ Bδ(x
∗) ⊂ Bρ(x

∗), it follows from (2.15) that

α̂1,0 = α1 =
sT
0 s0

sT
0 y0

∈ [Λ−12 ,Λ−11].

By Lemma 1, j1 ≤M . Define k2 = k1 + j1 > k1. By (2.39) and (2.43), we have

‖xk2
− x∗‖ = ‖xk1+j1 − x∗‖ ≤ ‖xk1+j1 − x̂k1,j1‖+ ‖x̂k1,j1 − x∗‖

≤ γ1‖xk1
− x∗‖2 + 1

2
‖x̂k1,0 − x∗‖

= γ1‖xk1
− x∗‖2 + 1

2
‖xk1

− x∗‖

≤ 3

4
‖xk1

− x∗‖. (2.44)

Since ‖x1 − x∗‖ ≤ δ, it follows that xk2
∈ Bδ(x

∗). By (2.41), xj ∈ Bρ(x
∗) for

1 ≤ j ≤ k1.
Now, proceed by induction. Assume that ki has been determined with xki

∈
Bδ(x

∗) and xj ∈ Bρ(x
∗) for 1 ≤ j ≤ ki. Let ji > 0 be the smallest integer with the

property that

‖x̂ki,ji − x∗‖ ≤ 1

2
‖x̂ki,0 − x∗‖ = 1

2
‖xki

− x∗‖.

Set ki+1 = ki + ji > ki. Exactly as in (2.44), we have

‖xki+1
− x∗‖ ≤ 3

4
‖xki

− x∗‖.

Again, xki+1
∈ Bδ(x

∗) and xj ∈ Bρ(x∗) for j ∈ [1, ki+1].
For any j ∈ [ki, ki+1), we have j ≤ ki + M − 1 ≤ Mi, since ki ≤ M(i − 1) + 1.

Hence, i ≥ j/M . Also, (2.42) gives

‖xj − x∗‖ ≤ γ3‖xki
− x∗‖

10

≤ γ3

(

3

4

)i−1

‖xk1
− x∗‖

≤ γ3

(

3

4

)(j/M)−1

‖x1 − x∗‖

= γcj‖x1 − x∗‖,

where

γ =

(

4

3

)

γ3 and c =

(

3

4

)1/M

< 1.

This completes the proof. 2

3 The CBB method for convex quadratic programming

In this section, we give numerical evidence which indicates that when m is sufficiently
large, the CBB method is superlinearly convergent for a quadratic function

f(x) =
1

2
xTAx− bTx, (3.45)

where A ∈ <n×n is symmetric, positive definite and b ∈ <n. Since CBB is invariant
under an orthogonal transformation and since gradient components corresponding
to identical eigenvalues can be combined (see for example Dai and Fletcher [11]), we
assume without loss of generality that A is diagonal:

A = diag(λ1, λ2, . . . , λn) with 0 < λ1 < λ2 < · · · < λn. (3.46)

In the following subsections, we give an overview of the experimental convergence
results; we then show in the special case m = 2 and n = 3 that the convergence rate
is no better than linear, in general. Finally, we show that the convergence rate for
CBB is strictly faster than that of steepest descent. We obtain some further sights
by applying our techniques to cyclic steepest descent.

3.1. Asymptotic behavior and cycle number

In the quadratic case, it follows from (1.2) and (3.45) that

gk+1 = (I − αkA)gk. (3.47)

If g
(i)
k denotes the i-th component of the gradient gk, then by (3.47) and (3.46), we

have
g
(i)
k+1 = (1− αkλi)g

(i)
k i = 1, 2, . . . , n. (3.48)

We assume that g
(i)
k 6= 0 for all sufficiently large k. If g

(i)
k = 0, then by (3.48)

component i remains zero during all subsequent iterations; hence it can be discarded.
In the BB method, starting values are needed for x0 and x1 in order to compute α1.

11

In our study of CBB, we treat α1 as a free parameter. In our numerical experiments,
α1 is the exact stepsize (1.3).

For different choices of the diagonal matrix (3.46) and the starting point x1,
we have evaluated the convergence rate of CBB. By the analysis given in [23] for
positive definite quadratics, or by the result given in Theorem 1 for general nonlinear
functions, the convergence rate of the iterates is at least linear. On the other hand,
for m sufficiently large, we observe experimentally, that the convergence rate is
superlinear. The largest value of m for which the convergence rate is linear is shown
in Table 1. For m > the integer given in the first row of the Table 1, the convergence
rate is superlinear, while for m ≤ the value appearing in the table, the convergence
is linear.

The limiting integers appearing in Table 1 are computed in the following way:
For each dimension, we randomly generate 30 problems, with eigenvalues uniformly
distributed on [0, n], and 50 starting points – a total of 1500 problems. For each
test problem, we perform 1000n CBB iterations, and we plot log(log(‖gk‖∞)) versus
the iteration number. We fit the data with a least squares line, and we compute
the correlation coefficient to determine how well the linear regression model fits
the data. If the correlation coefficient is 1 (or −1), then the linear fit is perfect,
while a correlation coefficient of 0 means that the data is uncorrelated. A linear
fit in a plot of log(log(‖gk‖∞)) versus the iteration number indicates superlinear
convergence. For m large enough, the correlation coefficients are between −1.0
and −.98, indicating superlinear convergence. As we decrease m, the correlation
coefficient abruptly jumps to the order of −.8. The integers shown in Table 1 are
the values of m where the correlation coefficient jumps. For strictly larger m, the
convergence is superlinear.

m 1 2 3 4 5 6 7

n 4 3 5 8 10 12 14

Table 1. Transition to superlinear convergence

Referring to the m = 1 column, which corresponds to the BB method, the
convergence rate is superlinear for n = 1, 2, and 3; the convergence rate is linear for
n = 4, 5, For m = 2, the convergence is linear for n ≥ 3, while the convergence is
superlinear for n = 1 or n = 2. Based on Table 1, the convergence rate is conjectured
to be superlinear for m > n/2 ≥ 3. For n < 8, the relationship between m and n
at the transition between linear and superlinear convergence is more complicated.
Graphs illustrating the convergence appear in Figure 1. The horizontal axis in these
figures is the iteration number, while the vertical axis gives log(log(‖gk‖∞)). Here
‖ · ‖∞ represents the sup-norm. In this case, straight lines correspond to superlinear
convergence – the slope of the line reflects the convergence order. In Figure 1, the
bottom two graphs correspond to superlinear convergence, while the top two graphs
correspond to linear convergence – for these top two examples, a plot of log(‖gk‖∞)
versus the iteration number is linear.

12

0 100 200 300 400 500 600 700 800 900 1000
−10

45

−10
40

−10
35

−10
30

−10
25

−10
20

−10
15

−10
10

−10
5

−10
0

= 4

n = 3

n = 6
n = 5

n

(a)

0 500 1000 1500 2000 2500 3000
−10

20

−10
18

−10
16

−10
14

−10
12

−10
10

−10
8

−10
6

−10
4

−10
2

−10
0

= 8

n = 9

n = 7

n = 6

n

(b)

Figure 1: Graphs of log(log(‖gk‖∞)) versus k, (a) 3 ≤ n ≤ 6 and m = 3, (b)
6 ≤ n ≤ 9 and m = 4.

3.2. Analysis for the case m = 2 and n = 3

The theoretical verification of the experimental results given in Table 1 is not
easy. We have the following partial result in connection with the column m = 2.

Theorem 2. For n = 3, there exists a choice for the diagonal matrix (3.46) and
a starting guess x1 with the property that αk+8 = αk for each k, and the convergence

rate of CBB with m = 2 is at most linear.

Proof. To begin, we treat the initial stepsize α1 as a variable. For each k, we
define the vector uk by

u
(i)
k =

(g
(i)
k)2

‖gk‖2
, i = 1, . . . , n. (3.49)

The above definition is important and is used for some other gradient methods, see
[22, 16]. For the case m = 2, we can obtain by (3.48), (2.8), (2.9) and the definition
of uk that

u
(i)
2k+1 =

(1− α2k−1λi)
4u

(i)
2k−1

∑n
l=1(1− α2k−1λl)4u

(l)
2k−1

(3.50)

for all k ≥ 1 and i = 1, . . . , n. In the same fashion, we have

α2k+1 =

∑n
l=1(1− α2k−1λl)

2u
(l)
2k−1

∑n
l=1 λl(1− α2k−1λl)2u

(l)
2k−1

. (3.51)

We want to force our examples to satisfy

u9 = u1 and α9 = α1. (3.52)

13

For k ≥ 1, a subsequent iteration of the method is uniquely determined by u2k−1

and α2k−1. It follows from (3.52) that u8k+1 = u1 and α8k+1 = α1 for all k ≥ 1, and
hence a cycle occurs.

For any i and j, let bij be defined by

bij = 1− α2i−1λj . (3.53)

Henceforth, we focus on the case n = 3 specified in the statement of the Theorem
2. To satisfy the relation (3.52), we impose the following condition on the stepsizes
{α1, α3, α5, α7},

∣

∣

∣

∣

∣

4
∏

i=1

bij

∣

∣

∣

∣

∣

= τ, j = 1, 2, 3, (3.54)

where τ > 0 is a positive number. By (3.54) and (3.50), we know that the first
equation of (3.52) is satisfied. On the other hand, (3.50), (3.51), α9 = α1, and the
definition of (3.53) imply the following system of linear equations for u1,

T u1 =











b211b21 b212b22 b213b23
b411b

2
21b31 b412b

2
22b32 b413b

2
23b33

b411b
4
21b

2
31b41 b412b

4
22b

2
32b42 b413b

4
23b

2
33b43

b511b
4
21b

4
31b

2
41 b512b

4
22b

4
32b

2
42 b513b

4
23b

4
33b

2
43



















u
(1)
1

u
(2)
1

u
(3)
1









= 0. (3.55)

The above system has 3 variables and 4 equations. Multiplying the j-th column by
b−21j b−12j b4j for j = 1, 2, 3 and using the condition (3.54), it follows that the rank of
the coefficient matrix T is the same as the rank of the 4 by 3 matrix B with entries
bij . By the definition of bij , the rank of T is at most 2; hence, the linear system
(3.55) has a nonzero solution u1.

To complete the construction, u1 should satisfy the constraints

u
(i)
1 > 0 i = 1, 2, 3 (3.56)

and
u
(1)
1 + u

(2)
1 + u

(3)
1 = 1. (3.57)

The above conditions are fulfilled if we look for a solution {α1, α3, α5, α7} of (3.54)
such that

α−11 , α−13 ∈ (λ1, λ2) and α−15 , α−17 ∈ (λ2, λ3). (3.58)

In this case, we may choose

u1 = t

[

b−211 b−121

(

b13
b43

− b12
b42

)

, b−212 b−122

(

b11
b41

− b13
b43

)

, b−213 b−123

(

b12
b42

− b11
b41

)]T

, (3.59)

where t > 0 is a scaling factor such that (3.57) holds. Therefore, if we choose
{α1, α3, α5, α7} satisfying (3.54) and (3.58) and furthermore u1 from (3.59), relation
(3.52) holds. Hence, we have that u8+i = ui and α8+i = αi for all i ≥ 1.

Now we discuss a possible choice of τ > 0 in (3.54). Specifically, we are inter-
ested in the maximal value τ ∗ of τ such that (3.54) and (3.58) hold. By continuity

14

assumption, we know that suitable solutions exist for any τ ∈ (0, τ ∗). This leads to
the maximization problem

max

{

τ :
4
∏

i=1

bij = τ (j = 1, 2, 3); α−11 , α−13 ∈ (λ1, λ2), α
−1
5 , α−17 ∈ (λ2, λ3)

}

.

(3.60)
To solve (3.60), we consider the Lagrangian function

L(τ, α1, α3, α5, α7, µ1, µ2, µ3) = τ +
3
∑

j=1

µj

[

τ −
4
∏

i=1

(1− α2i−1λj)

]

, (3.61)

where {µj} are the multipliers corresponding to equality constraints. Since at a
KKT point of (3.60) the partial derivatives of L are zero, we require {µi} to satisfy
the relation (3.54), µ1 + µ2 + µ3 = 1, and

3
∑

j=1

µjλj

4
∏

l = 1

l 6= i

(1− α2l−1λj) = 0 (i = 1, 2, 3, 4). (3.62)

Dividing each relation in (3.62) by τ and using (3.54), we obtain the following linear
equations for µ = (µ1, µ2, µ3)

T,

Hµ = 0, where H ∈ <4×3 with hij = λjb
−1
ij . (3.63)

To guarantee that the system (3.63) has a nonzero solution µ, the rank of the
coefficient matrix H must be at most 2. Let H3,3 denote the submatrix formed by
the first three rows of H. By direct calculation, we obtain

det(H3,3) =
λ1λ2λ3(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)(α1 − α3)(α3 − α5)(α5 − α1)

∏

i,j∈{1,2,3} bij
(3.64)

Thus, det(H3,3) = 0 and inequality constraints (3.58) lead to α1 = α3. Similarly, we
can get α5 = α7. From (3.54) we know that (3.60) achieves its maximum

τ∗ =
(λ1 − λ2)

2(λ2 − λ3)
2

(λ1λ2 + λ2λ3 + λ3λ1 − λ22)
2

(3.65)

at
α∗1 = α∗3 = (M − γ)−1, α∗5 = α∗7 = (M + γ)−1, (3.66)

where M = λ1+λ3

2 , γ =
√

ξ1+ξ2
2 , ξ1 = (M − λ1)

2 and ξ2 = (M − λ2)
2. From the

continuity argument we know that there exist cyclic examples of the CBB method
with m = 2 for any τ ∈ (0, τ ∗). For example, we may consider the following
symmetric subfamily of examples with η ∈ (0, 12],

α1, α5 =

[

M ∓
√

ηξ1 + (1− η)ξ2

]−1

, α3, α7 =

[

M ∓
√

(1− η)ξ1 + ηξ2

]−1

. (3.67)

15

It is easy to check that the above {αi} satisfies (3.54) and (3.58). When η moves
from 0 to 1

2 , we can see that the value τ moves from 0 to τ ∗.
Now we present some numerical examples. Suppose that λ1 = 1, λ2 = 5 and

λ3 = 8. Because of (3.66), we choose α∗1 = α∗3 =
1
2 and α∗5 = α∗7 =

1
7 from where the

maximizer τ ∗ = 9
49 is found. From (3.55) we get u1 = (972

1001 ,
28

1001 ,
1

1001)
T. By the def-

inition of u1, the previous discussions and by choosing g1 = t̄ (±18
√
3,±2

√
7,±1)T

with any t̄ > 0 and α1 = 1
2 , the CBB method with m = 2 produces cycling of the

sequence given by {ui} and {αi}.
By assuming that the Hessian matrix is A = diag(1, 5, 8), we also compute the

sequences {u2i−1} and {α2i−1} generated by (3.50) and (3.51). Initial values for u1

and α1 are obtained by a steepest descent step at u0, i.e.,

α1 = α0 =
uT
0 u0

uT
0Au0

; u
(i)
1 =

(1− α0λi)
2(u

(i)
0)2

∑

l(1− α0λi)2(u
(i)
0)2

(i = 1, 2, 3).

For different u0, we see that different cycles are obtained, which are numerically
stable. In Table 2, the index k̄ can be different for each vector u0 so that α−1

k̄+1
,

α−1
k̄+3

∈ (λ1, λ2).

uT
0 α−1

k̄+1
α−1

k̄+3
α−1

k̄+5
α−1

k̄+7
τ

(1, 2, 3) 4.9103 1.0000 8.0000 5.0008 4.2186E-6
(1, 3, 2) 3.2088 1.3409 6.9100 7.2058 1.2890E-1
(2, 1, 3) 1.1099 1.2764 5.0197 7.9938 1.5024E-2
(2, 3, 1) 1.5797 2.0807 5.7248 7.7683 1.3706E-1
(3, 1, 2) 4.9846 1.0026 7.9086 7.7458 1.6018E-3
(3, 2, 1) 1.0015 4.9912 7.8776 7.8866 9.4127E-4

Table 2: Different choices of u0 generate different cycles

2

3.3. Comparison with steepest descent

The analysis in Section 2.2 shows that CBB with m = 2 is at best linearly
convergent. By (3.48) and (3.54), we obtain

‖gk+8‖2 = τ2‖gk‖2, for all k ≥ 1, (3.68)

where τ is the parameter in (3.54). The above relation implies that the convergence
rate of the method only depends on the value τ . Furthermore, Table 2 tells us that
this value of τ is related to the starting point. It may be very small or relatively
large. The maximal possible value of τ is the τ ∗ in (3.65). In the 3-dimensional
case, we get

‖gk+1‖2 ≤
λ3 − λ1
λ3 + λ1

‖gk‖2 (3.69)

16

for the steepest descent method, see [1]. It is not difficult to show that

τ∗ <

[

λ3 − λ1
λ3 + λ1

]4

. (3.70)

Thus, we see that CBB with m = 2 is faster than the steepest descent method if
n = 3. This result could be extended to the arbitrary dimensions since we observe
that CBB with m = 2 generates similar cycles for higher-dimensional quadratics.

The examples provided in Section 2.2 for CBB with m = 2 are helpful in un-
derstanding and analyzing the behavior of other nonmonotone gradient methods.
For example, we can also use the same technique to construct cyclic examples for
the alternate step (AS) gradient method, at least theoretically. The AS method
corresponds to the cyclic steepest descent method (1.4) with m = 2. In fact, if we
define uk as in (3.49), we obtain for all k ≥ 1

α2k−1 =

∑

u
(l)
2k−1

∑

λlu
(l)
2k−1

, u
(i)
2k+1 =

(1− α2k−1λi)
4u

(i)
2k−1

∑

(1− α2k−1λl)4u
(l)
2k−1

(3.71)

for i = 1, . . . , n. For any n with u2n+1 = u1 and α2n+1 = α1, we require the stepsizes
{α2k−1 : k = 1, . . . , n− 1} to satisfy

∣

∣

∣

∣

∣

n−1
∏

i=1

bij

∣

∣

∣

∣

∣

= τ, j = 1, . . . , n, (3.72)

where bij is given by (3.53). At the same time, we obtain the following linear
equations for u1

T u1 = 0, where T ∈ R(n−1)×n with Tij = bij
∏i−1

l=1 b
4
lj . (3.73)

The above system (3.73) has n variables, but n− 1 equations. If there is a positive
solution ū1, then we may scale the vector and obtain another positive solution u1 =

cū1 with
∑

l u
(l)
1 = 1, which completes the construction of a cyclic example. Here

we present a 5-dimensional example. We first fix α1 = 1, α3 = 0.1, α5 = 0.2 and
α7 = 0.0625, and then choose

λ = (0.73477, 1.3452, 4.2721, 10.554, 16.154)

which are five roots of the equation
∏4

k=1(1− α2k−1w) = 0.2. Therefore, we get the
matrix

T =









0.26523 −0.34515 −3.2721 −9.5537 −15.154
0.00458 0.01228 65.659 −461.26 −32451
0.00311 0.00582 1.7964 −0.08696 −16870
0.00184 0.00208 0.00406 0.04056 −1800.5









.

The system Tu1 = 0 has the positive solution

ū1 = (5.6163E+5, 3.3397E+5, 7.3848E+3, 9.9533E+2, 1.0)T

17

which leads to

u1 = (6.2128E-1, 3.6945E-1, 8.1693E-3, 1.1011E-3, 1.1062E-6)T .

Therefore, if we choose the above initial vector u1, we get u10k+1 = u1 and α10k+1 =
α1 for all k ≥ 1, and hence the AS method falls into a cycle.

4 An adaptive cyclic BB method

In this section, we examine the convergence speed of CBB for different values of
m ∈ [1, 7], using quadratic programming problems of the form:

f(x) =
1

2
xTdiag(λ1, · · · , λn)x, x ∈ <n. (4.74)

We will see that the choice for m has a significant impact on performance. This leads
us to propose an adaptive choice for m. The BB algorithm with this adaptive choice
for m and a nonmonotone line search is called ACBB. Numerical comparisons with
SPG2 and with conjugate gradient codes using the CUTEr test problem library are
given later in Section 4.

4.1. A numerical investigation of cyclic BB

We consider the test problem (4.74) with four different condition numbers C for
the diagonal matrix: C = 102, C = 103, C = 104, and C = 105; and with three
different dimensions n = 102, n = 103, and n = 104. We let λ1 = 1, λn = C, the
condition number. The other diagonal elements λi, 2 ≤ i ≤ n − 1, are randomly

generated on the interval (1, λn). The starting points x
(i)
1 , i = 1, · · · , n, are randomly

generated on the interval [−5, 5]. The stopping condition is

‖gk‖2 ≤ 10−8.

For each case, 10 runs are made and the average number of iterations required by
each algorithm is listed in Table 3 (under the columns labeled BB and CBB). The
upper bound for the number of iterations is 9999. If this upper bound is exceeded,
then the corresponding entry in Table 3 is F .

In Table 3 we see that m = 2 gives the worst numerical results – in Section 3 we
saw that as m increases, convergence became superlinear. For each case, a suitably
chosen m drastically improves the efficiency the BB method. For example, in case of
n = 102 and cond = 105, CBB with m = 7 only requires one fifth of the iterations of
the BB method. The optimal choice of m varies from one test case to another. If the
problem condition is relatively small (cond = 102, 103), a smaller value m (3 or 4)
is preferred. If the problem condition is relatively large (cond = 104, 105), a larger
value of m is more efficient. This observation is the motivation for introducing an
adaptive choice for m in the CBB method.

18

Our adaptive idea arises from the following considerations. If a stepsize is used
infinitely often in the gradient method; namely, αk ≡ α, then under the assumption
that the function Hessian A has no multiple eigenvalues, the gradient gk must ap-
proximate an eigenvector of A, and gT

kAgk/g
T

k gk tends to the corresponding eigen-
value of A, see [10]. Thus, it is reasonable to assume that repeated use of a BB
stepsize leads to good approximations of eigenvectors of A. First, we define

νk =
gT

kAgk
‖gk‖ ‖Agk‖

. (4.75)

If gk is exactly an eigenvector of A, we know that νk = 1. If νk ≈ 1, then gk can be
regarded as an approximation of an eigenvector of A and αBB

k ≈ αSD
k . In this case,

it is worthwhile to calculate a new BB stepsize αBB
k so that the method accepts a

step close to the steepest descent step. Therefore, we test the condition

νk ≥ β, (4.76)

where β ∈ (0, 1) is constant. If the above condition holds, we calculate a new BB
stepsize. We also introduce a parameter M̄ , and if the number of cycles m > M̄ , we
calculate a new BB stepsize. Numerical results for this adaptive CBB with β = 0.95
are listed under the column adaptive of Table 3, where two values M̄ = 5, 10 are
tested.

From Table 3, we see that the adaptive strategy makes sense. The performance
with M̄ = 5 or M̄ = 10 is uniformly better than that of the BB method. This
motivates the use of a similar strategy for designing an efficient gradient algorithms
for unconstrained optimization.

BB CBB adaptive

n cond m=2 m=3 m=4 m=5 m=6 m=7 M̄=5 M̄=10
102 102 147 219 156 145 150 160 166 136 134

103 505 2715 468 364 376 395 412 367 349
104 1509 F 1425 814 852 776 628 878 771
105 5412 F 5415 3074 1670 1672 1157 2607 1915

103 102 147 274 160 158 162 166 181 150 145
103 505 1756 548 504 493 550 540 481 460
104 1609 F 1862 1533 1377 1578 1447 1470 1378
105 5699 F 6760 4755 3506 3516 2957 4412 3187

104 102 156 227 162 166 167 170 187 156 156
103 539 3200 515 551 539 536 573 497 505
104 1634 F 1823 1701 1782 1747 1893 1587 1517
105 6362 F 6779 5194 4965 4349 4736 4687 4743

Table 3: Comparing CBB(m) method with an adaptive CBB method

19

4.2. Nonmonotone line search and cycle number

As mentioned in Section 1, the choice of the stepsize αk is very important for
the performance of a gradient method. For the BB method, function values do not
decrease monotonically. Hence, when implementing BB or CBB, it is important to
use a nonmonotone line search.

Assuming that dk is a descent direction at the k-th iteration (gT

k dk < 0), a
common termination condition for the steplength algorithm is

f(xk + αkdk) ≤ fr + δαkg
T

k dk, (4.77)

where fr is the so-called reference function value and δ ∈ (0, 1) a constant. If fr =
f(xk), then the line search is monotone since f(xk+1) < f(xk). The nonmonotone
line search proposed in [26] chooses fr to be the maximum function value for the M
most recent iterates. That is, at the k-th iteration, we have

fmax = max
0≤i≤min{k,M−1}

f(xk−i). (4.78)

This nonmonotone line search is used by Raydan [34] to obtain GBB. Dai and
Schittkowski [15] extended the same idea to constrained nonlinear optimization and a
sequential quadratic programming method. An even more adaptive way of choosing
fr is proposed by Toint [38] for trust region algorithms and then extended by Dai
and Zhang [18]. Compared with (4.78), the new adaptive way of choosing fr allows
big jumps in function values, and is therefore very suitable for the BB algorithm,
see [18], [12], and [13].

The numerical results which we report in this section are based on the nonmono-
tone line search algorithm given in [18]. The only difference with the algorithm given
in [18] is that the starting guess for the stepsize coincides with the prior BB step
until the cycle length has been reached, at which point we recompute the step using
the BB formula; moreover, in each subsequent subiteration, after computing a new
BB step, we replace (4.77) by

f(xk + ᾱkdk) ≤ min{fmax, fr}+ δᾱkg
T

k dk,

where fr is the reference value given in [18] and ᾱk is the initial trial stepsize (the
previous BB step). It is proved in [18, Thm. 3.2] that the criteria given in [18] for
choosing the nonmonotone stepsize ensures convergence in the sense that

lim inf
k→∞

‖gk‖ = 0.

We now explain how we decided to terminate the current cycle, and recompute
the stepsize using the BB formula. Notice that the reinitialization of the stepsize has
no effect on convergence, it only effects the initial stepsize used in the line search.
Loosely, we would like to compute a new BB step in any of the following cases:

R1. The number of times m the current BB stepsize has been reused is sufficiently
large: m ≥M , where M is a constant.

20

R2. The following nonquadratic analogue of (4.76) is satisfied:

sT

k yk
‖sk‖2‖yk‖2

≥ β, (4.79)

where β < 1 is near 1. We feel that the condition (4.79) should only be used in
a neighborhood a local minimizer, where f is approximately quadratic. Hence,
we only use the condition (4.79) when the stepsize is sufficiently small:

‖sk‖2 < min{ c1fk+1

‖gk+1‖∞
, 1}, (4.80)

where c1 is a constant.

R3. The current step sk is sufficiently large:

‖sk‖2 ≥ max{c2
fk+1

‖gk+1‖∞
, 1}, (4.81)

where c2 is a constant.

R4. In the previous iteration, the BB step was truncated in the line search. That
is, the BB step had to be modified by the nonmonotone line search routine to
ensure convergence.

Nominally, we recompute the BB stepsize in any of the cases R1–R4. One case
where we prefer to retain the current stepsize is the case where the iterates lie in
a region where f is not strongly convex. Notice that if sT

k yk < 0, then there exists
a point between xk and xk+1 where the Hessian of f has negative eigenvalues. In
detail, our rules for terminating the current cycle and reinitializing the BB stepsize
are the following:

Cycle termination/Stepsize initialization

T1. If any of the condition R1 through R4 are satisfied and sT

k yk > 0, then the
current cycle is terminated and the initial stepsize for the next cycle is given
by

αk+1 = max{αmin,min{s
T

k sk
sT

k yk
, αmax},

where αmin < αmax are fixed constants.

T2. If the length m of the current cycle satisfies m ≥ 1.5M , then the current cycle
is terminated and the initial stepsize for the next cycle is given by

αk+1 = max{1/‖gk+1‖∞, αk}.

21

4.3. Numerical results

In this subsection, we compare the performance of our adaptive cyclic BB step-
size algorithm, denoted ACBB, with the SPG2 algorithm of Birgin, Mart́ınez, and
Raydan [5], with the PRP+ conjugate gradient code developed by Gilbert and No-
cedal [24], and with the CG DESCENT code of Hager and Zhang [28, 29]. The
SPG2 algorithm is an extension of Raydan’s [34] GBB algorithm. In our tests, we
set the bounds in SPG2 to infinity. The PRP+ code is available at:

http://www.ece.northwestern.edu/∼nocedal/software.html

The CG DESCENT code is found at:

http://www.math.ufl.edu/∼hager/papers/CG

The line search in the PRP+ code is a modification of subroutine CSRCH of Moré
and Thuente [32], which employs various polynomial interpolation schemes and safe-
guards in satisfying the strong Wolfe conditions. CG DESCENT employs an “ap-
proximate Wolfe” line search. All codes are written in Fortran and compiled with
f77 under the default compiler settings on a Sun workstation.

The parameters of the ACBB algorithm are αmin = 10−30, αmax = 1030, c1 =
c2 = 0.1, and M = 4. For the initial iteration, the starting stepsize for the line
search was α1 = 1/‖g1‖∞. The parameter values for the nonmonotone line search
routine from [18] were δ = 10−4, σ1 = 0.1, σ2 = 0.9, β = 0.975, L = 3, M = 8, and
P = 40.

Our numerical experiments are based on the entire set of 160 unconstrained
optimization problem available from CUTEr in the Fall, 2004. As explained in [29],
we deleted problems that were small, or problems where different solvers converged
to different local minimizers. After the deletion process, we were left with 111 test
problems with dimension ranging from 50 to 104.

Nominally, our stopping criterion was the following:

‖∇f(xk)‖∞ ≤ max{10−6, 10−12‖∇f(x0)‖∞}. (4.82)

In a few cases, this criterion was too lenient. For example, with the test problem
penalty1, the computed cost still differs from the optimal cost by a factor of 105

when the criterion (4.82) is satisfied. As a result, different solvers obtain completely
different values for the cost, and the test problem would be discarded. By changing
the convergence criterion to ‖∇f(xk)‖∞ ≤ 10−6, the computed costs all agreed to
6 digits. The problems for which the convergence criterion was strengthened were
dqrtic, penalty1, power, quartc, and vardim.

The CPU time in seconds and the number of iterations, function evaluations,
and gradient evaluations for each of the methods are posted at the following web
site:

http://www.math.ufl.edu/∼hager/papers/CG (4.83)

Here we analyze the performance data using the profiles of Dolan and Moré [19].
That is, we plot the fraction P of problems for which any given method is within

22

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CG_DESCENT

ACBB

PRP+

SPG2

P

1
τ

164

Figure 2: Performance based on CPU time

a factor τ of the best time. In a plot of performance profiles, the top curve is the
method that solved the most problems in a time that was within a factor τ of the
best time. The percentage of the test problems for which a method is the fastest is
given on the left axis of the plot. The right side of the plot gives the percentage of
the test problems that were successfully solved by each of the methods. In essence,
the right side is a measure of an algorithm’s robustness.

In Figure 2, we use CPU time to compare the performance of the four codes
ACBB, SPG2, PRP+, and CG DESCENT. The best performance, relative to the
CPU time metric, was obtained by CG DESCENT, the top curve in Figure 2, fol-
lowed by ACBB. For this collection of methods, the number of times any method
achieved the best time is shown in Table 1. The column total in Table 1 exceeds
111 due to ties for some test problems.

The results of Figure 2 indicate that ACBB is much more efficient than SPG2,
while it performed better than PRP+, but not as well as CG DESCENT. From the
experience in [34], the GBB algorithm, with a traditional nonmonotone line search
[26], may be affected significantly by nearly singular Hessians at the solution. We
observe that nearly singular Hessians do not affect ACBB significantly. In fact,
ACBB becomes more efficient as the problem becomes more singular. Furthermore,
since ACBB does not need to calculate the BB stepsize at every iteration, CPU time
is saved, which can be significant when the problem dimension is large. For this test
set, we found that the average cycle length for ACBB was 2.59. In other words, the

23

Method Fastest

CG DESCENT 70
ACBB 36
PRP+ 9
SPG2 9

Table 1: Number of times each method was fastest (time metric, stopping criterion
(4.82))

BB step is reevaluated after 2 or 3 iterations, on average.
Even though ACBB did not perform as well as CG DESCENT for the complete

set of test problems, there were some cases where it performed exceptionally well
(see Table 2). One important advantage of the ACBB scheme over conjugate gradi-

Problem Dimension ACBB CG DESCENT

FLETCHER 5000 9.14 989.55
FLETCHER 1000 1.32 27.27
BDQRTIC 1000 .37 3.40
VARDIM 10000 .05 2.13
VARDIM 5000 .02 .92

Table 2: CPU times for selected problems

ent routines such as PRP+ or CG DESCENT is that in many cases, the stepsize for
ACBB is either the previous stepsize or the BB sizesize (1.5). In contrast, with con-
jugate gradient routines, each iteration requires a line search. Due to the simplicity
of the ACBB stepsize, it can be more efficient when the iterates are in a regime where
the function is irregular and the asymptotic convergence properties of the conjugate
gradient method are not in effect. One such application is bound constrained op-
timization problems – as components of x reach the bounds, these components are
often held fixed, and the associated partial derivative change discontinuously.

5 Conclusion and discussion

In this paper, we analyze the cyclic Barzilai-Borwein method. For general non-
linear functions, we prove linear convergence. For convex quadratic functions, our
numerical results indicate that when m > n/2 ≥ 3, CBB is likely R-superlinearly.
For the special case n = 3 and m = 2, the convergence rate, in general, is no bet-
ter than linear. By utilizing nonmonotone line search techniques, we develop an

24

adaptive cyclic BB stepsize algorithm (ACBB) for general nonlinear unconstrained
optimization problems.

The test results in Figure 2 indicate that ACBB is significantly faster than SPG2.
Since the mathematical foundations of ACBB and the conjugate gradient algorithms
are completely different, the performance seems to depend on the problem. Roughly
speaking, if the objective function is “close” to quadratic, the conjugate gradient
routines seem to be more efficient; if the objective function is highly nonlinear, then
ACBB is comparable to or even better than conjugate gradient algorithms.

References

[1] H. Akaike, On a successive transformation of probability distribution

and its application to the analysis of the optimum gradient method,
Ann. Inst. Statist. Math. Tokyo, 11 (1959), pp. 1–17.

[2] J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA
J. Numer. Anal., 8 (1988), pp. 141–148.

[3] E. G. Birgin, I. Chambouleyron, and J. M. Mart́inez, Estimation of the

optical constants and the thickness of thin films using unconstrained optimiza-

tion, J. Comput. Phys., 151 (1999), pp. 862–880.

[4] E. G. Birgin and Y. G. Evtushenko, Automatic differentiation and spec-

tral projected gradient methods for optimal control problems, Optim. Methods
Softw., 10 (1998), pp. 125–146.

[5] E. G. Birgin, J. M. Mart́inez, and M. Raydan, Nonmonotone spectral

projected gradient methods for convex sets, SIAM Journal on Optimization,
10:4 (2000), pp. 1196–1211.

[6] M. Brendel, On two algorithms for the minimization of box constrained

quadratic functions, MS344 honours project, Department of Mathematics, Uni-
versity of Dundee, 2001.

[7] A. Cauchy, Méthode générale pour la résolution des systèms d’equations si-

multanées, Comp. Rend. Sci. Paris, 25 (1847), pp. 46–89.

[8] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint, CUTE: Con-
strained and unconstrained testing environments, ACM Trans. Math. Software,
21 (1995), pp. 123–160.

[9] Y. H. Dai, On the nonmonotone line search, Journal of Optimization Theory
and Applications 112:2 (2002), pp. 315–330.

[10] Y. H. Dai, Alternate stepsize gradient method, Optimization, 52 (2003),
pp. 395–415.

25

[11] Y. H. Dai and R. Fletcher, On the asymptotic behaviour of some new gradi-

ent methods, Numerical Analysis Report NA/212, Department of Mathematics,
University of Dundee, 2003.

[12] Y. H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-

scale box-constrained quadratic programming, University of Dundee Report
NA/215, 2003.

[13] Y. H. Dai and R. Fletcher, New algorithms for singly linearly constrained

quadratic programs subject to lower and upper bounds, Numerical Analysis Re-
port NA/216, Department of Mathematics, University of Dundee, 2003.

[14] Y. H. Dai and L. Z. Liao, R-linear convergence of the Barzilai and Borwein

gradient method, IMA Journal of Numerical Analysis, 22 (2002), pp. 1–10.

[15] Y. H. Dai and K. Schittkowski, Solving constrained nonlinear programming

problems by sequential quadratic programming with non-monotone line search,
submitted for publication

[16] Y. H. Dai and X. Q. Yang, A new gradient method with an optimal step-

size property, Research report, Institute of Computational Mathematics and
Scientific/Engineering Computing, Chinese Academy of Sciences, 2001 .

[17] Y. H. Dai and Y. X. Yuan, Alternate minimization gradient method, IMA
Journal of Numerical Analysis, 23 (2003), pp. 377–393.

[18] Y. H. Dai and H. Zhang, Adaptive two-point stepsize gradient algorithm,
Numerical Algorithms, 27 (2001), pp. 377–385.

[19] E. D. Dolan and J. J. Moré, Benchmarking optimization software with

performance profiles, Math. Program., 91 (2002), pp. 201-213.

[20] R. Fletcher, Low storage methods for unconstrained optimization, Lectures
in Applied Mathematics (AMS) 26 (1990), pp. 165–179.

[21] R. Fletcher, On the Barzilai-Borwein method, Numerical Analysis Report
NA/207, Department of Mathematics, University of Dundee, 2001

[22] G. E. Forsythe, On the asymptotic directions of the s-dimensional optimum

gradient method, Numer. Math., 11 (1968), pp. 57–76.

[23] A. Friedlander, J. M. Mart́inez, B. Molina, and M. Raydan, Gradient

method with retards and generalizations, SIAM J. Numer. Anal., 36 (1999),
pp. 275–289.

[24] J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate

gradient methods for optimization, SIAM J. Optim., 2 (1992), pp. 21–42.

26

[25] W. Glunt, T. L. Hayden, and M. Raydan, Molecular conformations from

distance matrices, J. Comput. Chem., 14 (1993), pp. 114–120.

[26] L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search

technique for Newton’s method, SIAM J. Numer. Anal., 23 (1986), pp. 707–716.

[27] L. Grippo and M. Sciandrone, Nonmonotone globalization techniques for

the Barzilai-Borwein gradient method, Comput. Optim. Appl., 23 (2002), pp.
143–169.

[28] W. W. Hager and H. Zhang, A new conjugate gradient method with guar-

anteed descent and an efficient line search, to appear in SIAM J. Optim.

[29] W. W. Hager and H. Zhang, CG DESCENT, A conjugate gradient method

with guaranteed descent, submitted to ACM Transactions on Mathematical Soft-
ware, January, 15, 2004.

[30] Y. L. Lai, Some properties of the steepest descent method, Acta Mathematicae
Applicatae Sinica, 4 (1981), 106–116 (in Chinese).

[31] W. B. Liu and Y. H. Dai, Minimization algorithms based on supervisor and

searcher cooperation, Journal of Optimization Theory and Applications, 111
(2001), pp. 359–379.

[32] J. J. Moré and D. J. Thuente, Line search algorithms with guaranteed

sufficient decrease, ACM Trans. Math. Software, 20 (1994), pp. 286–307.

[33] M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient

method, IMA J. Numer. Anal., 13 (1993), pp. 321–326.

[34] M. Raydan, The Barzilai and Borwein gradient method for the large scale

unconstrained minimization problem, SIAM J. Optim., 7 (1997), pp. 26–33.

[35] M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems

Report in the International Workshop on “Optimization and Control with Ap-
plications”, Erice, Italy, July 9–17, 2001

[36] M. Raydan and B. F. Svaiter, Relaxed steepest descent and Cauchy-

Barzilai-Borwein method, Comput. Optim. Appl., 21 (2002), pp. 155–167.

[37] T. Serafini, G. Zanghirati, L. Zanni, Gradient projection methods

for quadratic programs and applications in training support vector ma-

chines, to appear in: Optimization Methods and Software, available at
(http://www.optimization-online.org), 2003.

[38] Ph. L. Toint, A non-monotone trust region algorithm for nonlinear optimiza-

tion subject to convex constraints, Math. Program., 77 (1997), pp. 69–94.

27

