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Abstract

We introduce a method for constrained nonlinear programming, that
is widely used in mechanical engineering and that is known under the
name SCP for sequential convex programming. The algorithm consists
of solving a sequence of convex and separable subproblems, where an
augmented Lagrangian merit function is used for guaranteeing conver-
gence. Originally, SCP methods were developed in structural mechanical
optimization, and are particularly applied to solve topology optimization
problems. These problems are extremely large and possess dense Hessians
of the objective function. The purpose of the paper is to show, that con-
strained dense nonlinear programs with 10° to 10° variables can be solved
successfully and that SCP methods can be applied also to optimal control
problems based on semilinear elliptic partial differential equations after a
full discretization.
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1 Introduction

We consider the smooth, constrained optimization problem of minimizing a
scalar objective function f(z) under nonlinear equality and inequality con-



straints,
min f(x)
gj(x) :O, j: 1,...,m€ s

zeR": (1)
gj(x)goa j:me+1a"'7m )

< x< Ty .

Moreover, there are lower and upper bounds for the variables, x; and z,, re-
spectively. We have m. equality and m — m, inequality constraints, which are
summarized by the vector g(z) := (g1(z),...,gm(z))T. We assume that the
functions f and g are continuously differentiable and that the feasible domain
of (1) is non-empty.

Despite the success of sequential quadratic programming (SQP) methods,
another class of efficient optimization algorithms was proposed mainly by en-
gineers, where the motivation is to optimize mechanical structures. The first
method is known under the name CONLIN or convex linearization, see Fleury
and Braibant [5] or Fleury [4]. The algorithm is based on the observation that
in some special cases, typical structural constraints become linear in the inverse
variables. Although this special situation is rarely observed in practice, a suit-
able substitution by inverse variables depending on the sign of the corresponding
partial derivatives and subsequent linearization is expected to linearize model
functions somehow.

More general convex approximations are introduced by Svanberg [17] known
under the name method of moving asymptotes (MMA). The goal is always to
construct convex and separable subproblems, for which efficient solvers are avail-
able. Thus, we denote this class of methods by SCP, an abbreviation for sequen-
tial convex programming. The resulting algorithm is very efficient for solving
mechanical engineering problems, if a proper starting point is available and if
only a crude approximation of the optimal solution needs to be computed be-
cause of certain side conditions, for example calculation time or round-off errors
in objective function and constraints. Some comparative numerical tests of SCP,
SQP, and some other nonlinear programming codes are available for test prob-
lems from mechanical structural optimization, see Schittkowski, Zillober, and
Zotemantel [16].

The computer code under investigation is the SCP routine SCPIP, of Zil-
lober [21, 22], a realization of the method of moving asymptotes (MMA). Strictly
convex and fully separable subproblems are solved by an interior point method
combined with an active set strategy. General sparsity of the Jacobian matrix of
the constraints is taken into account. Version 2.3 of SCPIP has been enhanced
to use special sparsity information provided by the models.

The general structure of an SCP algorithm and some organizational details
are outlined in Section 2, for example the rules by which moving asymptotes are
computed. Especially we show how the method can be stabilized to guarantee
convergence. Merit function is the augmented Lagrangian function, where vio-
lation of constraints is penalized in the Lo-norm. For more information about
theoretical convergence results see Zillober [19].



Topology optimization is one of the main domains of applications, where
SCP methods are used. The idea is to distribute mass within a given volume,
so that the global compliance of the structure is minimized. Since the number
of the finite elements is often very large depending on the desired discretization
accuracy, very large nonlinear programs must be solved iteratively, where the
number of variables is on the order of 10° to 10° or even more. In addition, more
realistic structures require constraints for each single element leading to a large
number of nonlinear inequality constraints on the same order of magnitude.
Section 3 contains an outline of the standard power-law approach that allows
the construction of scalable test problems for the SCP code under investigation,
and some numerical results.

Large nonlinear programming problems are also obtained in a completely
different area, the optimal control of partial differential equations. After dis-
cretizing state and control variables, equality constrained nonlinear programs
are obtained, where finite difference formulae for the state equations lead to
large sets of nonlinear equality constraints. In Section 4, we present some nu-
merical results for a series of semilinear elliptic control problems studied by
Maurer and Mittelmann [9, 10]. Surprisingly, also these problems can be solved
very efficiently by the SCP code SCPIP. To the knowledge of the authors, the
solution of problems with a dominating set of equality constraints or of optimal
control problems in general by an SCP method has never been tried before.

2 Sequential Convex Programming Methods

Sequential convex programming or SCP methods are developed mainly for me-
chanical structural optimization. The first approach of Fleury and Braibant [5]
and Fleury [4] is known under the name convex linearization (CONLIN), and ex-
ploits the observation that in some special cases, typical structural constraints
become linear in the inverse variables. We start our investigations from the
inequality-constrained nonlinear program

min f(x)
re€R": g(x)<0 (2)

T <x<xYy .

Equality constraints are dropped to simplify the analysis. They are linearized
by the method we are interested in, and would not lead to any new insight.

To illustrate the motivation, we consider the most simple example, two bars
fixed at a wall and connected at the other end. An external load p is applied at
this node, see Figure 1. The two design variables are the cross sectional areas
a; scaled by elasticity modulus F and length [;, i = 1,2, i.e., ; = Fa;/l;. If s;
and ¢; denote the sine and cosine function values of the corresponding angles of
the trusses, i = 1,2, the horizontal and vertical displacements are given in the
form

h(z) = |pl(cosp(s]/x2 + s5/x1) — sintp(s1¢1/m2 + saca/x1))/sin(¢1 — ¢2)



Figure 1: 2-Bar-Truss

v(x) = |p|(siny(c? /zg + c2/x1) — costp(sic1/ze + saca/x1))/sin? (1 — ¢a) .
If we assume now that our optimization problem consists of minimizing the
weight of the structure under some given upper bounds for these displacements,
we get nonlinear constraints that are linear in the reciprocal design variables.

Although this special situation is always found in case of statically deter-
minate structures, it is rarely observed in practice. However, a suitable sub-
stitution by inverse variables depending on the sign of the corresponding par-
tial derivatives and subsequent linearization is expected to linearize constraints
somehow.

For the CONLIN method, Nguyen, Strodiot, and Fleury [12] gave a con-
vergence proof but only for the case that (2) consists of a concave objective
function and concave constraints which is of minor practical interest. They
also showed that a generalization to non-concave constraints is not possible.
More general convex approximations are introduced by Svanberg [17], which
are known under the name method of moving asymptotes (MMA). The overall
goal is to construct nonlinear convex and separable subproblems, for which effi-
cient solvers are available. The choice of the asymptotes influences the curvature
of the approximations, and must be adapted carefully to improve the quality of
the convex approximation.

Since we assume that (2) is nonconvex and nonlinear in general, the basic
idea is to replace (2) by a sequence of simpler problems. Starting from an initial
vector xop € IR™ and an initial multiplier estimate ug € IR™, iterates x, € IR"
and uy € IR™ are computed successively by solving subproblems of the form

min f*(y)
yeR": g~(y)<0 : (3)
yE<y<yh .

where f¥ and g* are approximations of the f and g, respectively, and ylk , y¥ are



suitable lower and upper bounds of the variables also depending on the current
iterate. Let yr be the optimal solution and v the corresponding Lagrangian
multiplier of (3). A new iterate is computed by

Thp1 = T+ op(yr — 1) @
g1 = ug +ag(vr —ug)
where oy, is a steplength parameter discussed subsequently.

Simpler means in this case that the subproblem is solvable by an available
black box technique, more or less independently of the underlying model struc-
ture. In particular, it is assumed that the numerical algorithm for solving (3)
does not require any additional function or gradient evaluations of the original
ones f(z) and g;(z), j = 1, ..., m. The approach indicates also that we are
looking for a simultaneous approximation of an optimal solution z* and of the
corresponding multiplier u*. Thus, we require that

1. (3) is strictly convex and smooth, i.e., the functions f*(z) and gf(x) are
twice continuously differentiable, j =1, ..., m,

2. (3) is a first order approximation of (2) at g, i.e., f(zx) = f*(zx),
V() = V@), g(ar) = " (21), and Vg(ax) = Vg* (),

3. the search direction (yx — xx,vr — ug) is a descent direction for an aug-
mented Lagrangian merit function introduced below.

Strict convexity of (3) means that the objective function f*(z) is strictly
convex and that the constraints gf(x) are convex functions for all iterates k and
j =1, ..., m. If the feasible domain is non-empty, (3) has a unique solution
yr € IR™ with Lagrangian multiplier vy € IR™. A further important consequence
is that if y, = x, then xp and vy are at least a stationary point of the general
nonlinear programming problem (2).

A line search is introduced to stabilize the solution process, particularly
helpful when starting from a bad initial guess. We are looking for an ay, see (4),
0 < ag <1, so that a step along a merit function ¥y («) from the current iterate
to the new one becomes acceptable. The idea is to penalize the Lagrangian
function in the Lo norm, as soon as constraints are violated, by defining

®(.) = 0) + X (wigs(o) + grs@?) = 5 Sy 6)

JjeJ JEK

we) =, (2 )ra( W0 Q

where J = {j : g;(x) > —u;/r;} and K = {1,...,m} \ J define the constraints
considered as active or inactive, respectively.

The steplength parameter oy is required in (4) to enforce global convergence
of the optimization method, i.e., the approximation of a point satisfying the nec-
essary Karush-Kuhn-Tucker optimality conditions when starting from arbitrary

and we set



initial values. The merit function (5) is also called augmented Lagrangian func-
tion, see for example Rockafellar [14]. The corresponding penalty parameter
r, at the k-th iterate that controls the degree of constraint violation, must be
chosen carefully to guarantee a descent direction of the merit function, so that
the line search is well-defined,

U (0) < —pllye — @r])? (7)

with a suitable constant . The line search consists of a successive reduction of o
starting at 1, usually combined with a quadratic interpolation, until a sufficient
decrease condition is obtained. For a more detailed discussion of line search and
global convergence aspects, see Ortega and Rheinboldt [13].

The basic idea of the method of moving asymptotes, a special variant of
an SCP method, is to linearize f and g; with respect to transformed variables
(UF — ;)71 and (z; — L¥)~! depending on the sign of the corresponding first
partial derivative. UF and L% are reasonable bounds and are adapted by the
algorithm after each successful step. Also several other transformations have
been developed in the past.

The corresponding approximating functions that define subproblem (3), are

’LO yl zO yt
fk(y) = ﬁ00+ § : - E k0
z ~ Y _L
i€l iel,

k. k. (8)
gf(y) = /B(lij + Z Uk = - Z _’JLk )

j=1,...,m, where y = (y1,...,¥n)". The index sets are defined by

I, ={i:1<i<n, 0 f(zy) > 0}
81‘2‘
and
Io={it1<i<n, 2 fa) <0} .
ox;
In a similar way, ng and I, are defined. The coefficients 5”, 17=0,...,m,
1 =1, ..., n, are chosen to satlsfy the requirements mentioned above, i.e., that

(3) is strictly convex and smooth and that (3) is a first order approximation of
(2) at xy,

B = gj(ar) — Z %ﬂi’“) (UF —2p) + Z %ﬂi’“) (zr; — L) (9)

.+ L
ztek ztek

for j =0, ..., m with gg := f for simplicity, and

095@) (k32 iy,
koL 6:@ .
TN ag () , (10)
j\ Lk o . _
37:“ (zh,i — Lf) , ifie Iy



for j =1, ..., m. The second subindex ¢ of zj, ; indicates the i-th coefficient of
TE,t=1,..., n.

To ensure strict convexity of the approximation of the objective function, we
introduce additional positive parameters 7 and get a regularized subproblem
of the form

oftz) (Uz'k - xk,z‘)Q + 78 (yi — «’ﬂk,i)Q, if i € I},
k . Ox;
i (yz) = ) (11)
" 0/ (1) ) ,
Oz (x;” - Lf) - Tik (yi —ar)”, ifiely,

Regularization of the objective function guarantees strict convexity of f*(x), see
Zillober [19]. As shown there, the search direction (yx — 2, vi —ug) is a descent
direction for the augmented Lagrangian merit function (5). The update rule for
the penalty parameter ry is the same as proposed by Schittkowski [15] for an
SQP method. If the adaptation rule for the parameters L¥ and UF guarantees
that the absolute value of their differences from the current iteration point xj
is uniformly bounded away from 0 and that their absolute value is bounded,
global convergence can be shown.

The choice of the asymptotes L¥ and UF, is crucial for the computational
behavior of the method. An efficient update scheme for the i-th coefficient,
t=1, ..., n, and the k-th iteration step is given as follows:

k=0,1": Lf =2k — M (Tus — 214)

UF = i+ M (@i — 214) -
k=23,.. Ifsign(xg; — Tx_1,) = sign(zp_1,; — Tp—2,) :
LY = @i — Ae(ze-1i — L7Y)
UF =2+ MU —aio1,)
If sign(wg,i — Tk—1,0) # sign(Tp—1,; — Th—1) :
LF =api — Ms(xp_1i — LF7Y)
Uf = ai + XU —wp1i)

A suitable choice of the constants is Ay = 0.5, Ao = 1.15, A3 = 0.7. If there is
no change in the sign of a component of two successive iterations, this situation
is interpreted as smooth convergence and allows a relaxation of the asymptotes.
If there are sign changes between two successive iterations, we are afraid of
cycling and the asymptotes remain closer to an iteration point leading to more
conservative approximations.

Additional safeguards ensure the compatibility of this procedure with the
overall scheme and guarantee global convergence. A small positive constant is
introduced to avoid that the difference between the asymptotes and the current
iteration point becomes too small. Moreover, absolute bounds are attached
such that the asymptotes cannot tend to infinity. However, these safeguards



are rarely used in practice, see Zillober [19] for more details. Note that the
occurrence of cycling is also reduced by the line search procedure.

For the first SCP codes developed, the convex and separable subproblems
are solved very efficiently by a dual approach, where dense linear systems of
equations with m rows and columns are solved, see Svanberg [17] or Fleury [4].
An interior point method for the solution of the subproblems is proposed by
Zillober [20]. The advantage is to be able formulate either n x n or m x m linear
systems of equations leading to a more flexible treatment of large problems.

Since the interior point method is an infeasible primal-dual method, there
are no further restrictions on the starting values for the SCP method. The
interior point condition applies only for artificial variables, cf. Zillober [20].
The resulting algorithm is very efficient especially for large scale mechanical
engineering problems, when sparsity patterns of the original problem data can
be exploited. To summarize, the most important features of SCP methods are
that

- very large scale problems can be solved,

- the algorithm is globally convergent,

- alarge number of constraints can be treated by an active set strategy,
see Zillober [21],

- sparsity of the Jacobian of the constraints can be exploited,

- bounds of variables and linear equality constraints remain satisfied.

If the constraints of (3) become inconsistent, it is possible to introduce an
additional variable z and to modify objective function and constraints, for ex-
ample

min f*(y) + prz

k
g (y)—zSO,
yeR".ze R: . ) (12)
Y SY S Yy s
z>0

in the simplest form. The penalty term pj is added to the objective function to
reduce the influence of the additional variable z as much as possible. The index
k implies that this parameter also needs to be updated during the algorithm.
It is obvious that (12) always possesses a feasible solution.

3 Topology Optimization

A typical application of an SCP algorithm is the minimization of the weight
of a mechanical structure under certain loads and constraints for admissible
stresses, displacements, or dynamic responses. Highly complex industrial and
academic design problems are solved today by means of nonlinear programming
algorithms without any chance to get equally qualified results by traditional em-
pirical approaches, see for example Schittkowski, Zotemantel, and Zillober [16]
for comparative results and a list of 79 test problems based on a finite element



formulation, confer also Kneppe, Krammer, and Winkler [8]. In Zillober and Vo-
gel [23, 24], industrial applications of the SCP code SCPIP of Zillober ([21]),[22])
are found.

To give an impression about the capabilities of an SCP implementation for
solving very large scale nonlinear programming problems, we consider now the
area of mechanical topology optimization. Given a predefined domain in the
2D /3D space with boundary conditions and external load, the intention is to
distribute a percentage of the initial mass on the given domain such that a
global measure takes a minimum, see Bendsge and Sigmund [2] for a broader
introduction. Assuming isotropic material, the so-called power law approach,
see also Bendsge [1] or Mlejnek [11], leads to a nonlinear programming problem
of the form

min uTp

z€R", ueR: Vie) <o, (13)
7 C K(zu=p

O<xlS$S17

where 2 = (21,...,2,)T denotes the relative material densities, that are artifi-
cially introduced variables. In the final solution, we consider a small value of x;
as zero or no mass, a larger value as one or full mass. Theoretically, one is only
interested in 0-1 solutions, which are not guaranteed by the continuous approach
applied. u = (uy,...,uq)T is the displacement vector computed from the linear
system of equations K (x)u = p with a positive definite stiffness matrix K(x)
and an external load vector p. d denotes the number of degrees of freedom of
the structure. We assume without loss of generality that there is only one load
case. The goal is to minimize the so-called compliance or, in other words, to
make the structure as stiff as possible.

It is essential to understand that the system of linear equations K (z)u = p
can be considered as the state equations of our optimization problem. Thus,
(13) is also written in the form

min p? K (z)~!p
zeR": V(z)<adlp , (14)

O<y<zx<1,

at least conceptually. In practice, however, we assume that finite element simu-
lation software is available to set up the stiffness matrix and to solve the system
K (z)u = p internally. To indicate that u depends on the relative densities z,
we use the notation u(z).

The relative densities and the elementary stiffness matrices K; define K(x)
by

=1



V(x) is the volume of the structure, usually a linear function of the design
variables,

V(z) = Zn:xi‘/; ,
=1

where V; is the volume of the i-th finite element. Vj is the available volume,
Vo = >i, Vi, and a with 0 < @ < 1 the given fraction of the full volume to
distribute the available mass.

x; is a vector of small positive numbers for avoiding singularities. The non-
linearity x! in the state equation is found heuristically and usually applied in
practice with ¢ = 3. Its role is to penalize intermediate values between the lower
bound and 1.

The partial derivatives of the objective function of problem (13) or (14),
respectively, are computed from

%(u@:)%) = gz} 'u() Kju(z) (15)

for j =1, ..., n. Since the elementary stiffness matrices K; are very sparse, for
example containing only non-zero entries on an 8 x 8—submatrix in case of the
rectangular elements used in this section, the j-th partial derivative is computed
very efficiently as soon as the displacement vector u(x) is available. (15) follows
from the identity K (z)u(z) = p with a constant external force p, and

%(K(x)u(m)) =0

) (16)
= qxg._lKju(:c) + K(x)a—x]u(x)

leading to
0
T _ 1.7 -1
= —qz] u(x)" Kju(x)

In addition to the standard topology optimization problem (13) or (14) with
only one constraint for the volume, we consider also more realistic problems
containing bounds for the local compliances

ci(r) = rlu(z) Ku(z) | (18)

1 =1, ..., n. If bounds are given by some suitable values ¢;, we obtain con-
strained nonlinear programs of the form

zeR": (19)
O<z; <x<1,
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Derivatives for local compliances are obtained from

ele) = (et Hato))

= 5ijqx?_1u(x)TKju(x) + 2x?u(x)TKi8£u(x)
L
5,-jqx?_1u(x)TKju(x) - 2qx§_1x?u(x)TK¢K(x)71Kju(x) :

(20)
Here, 0;; represents the Kronecker symbol, and the last equation follows from
(17). Since Kju(x) is a very sparse vector and can be computed in advance for
all j, and since a Cholesky decomposition of K (x) is known from the solution of
K (z)u = p, the calculation of the j-th partial derivative of the local compliance
can be organized in an efficient way, but still requires substantial amount of
computational work.

The solution of topology optimization problems easily leads to very large
scale, highly nonlinear programs. The probably most simple example is a beam,
which is loaded in the middle and supported at the two lower vertices. The
design region is a rectangular plate, see Figure 2, discretized by rectangular
finite elements. For symmetry reasons, we consider only one half of the beam
for our calculations. The number of horizontal grid lines is denoted by n,, the
number of vertical grid lines by n,,.

The solution of topology optimization problems as outlined so far, produces
a strange phenomenon, so-called checkerboards. In some areas, the 0-1 distri-
bution is structured like a checkerboard in certain areas. Thus, an additional
filter is applied by which partial derivatives are modified by certain weights
depending on a given radius around the considered element, see for example
Bendsge and Sigmund [2]. Moreover, the final structure depends heavily on the
volume fraction a used to restrict the mass distribution, see (14). In Figure 3, a
series of final beam structures is listed depending on increasing filter size rang-
ing from 0, 4, 8, 12, and 16 in rows and increasing mass distribution values
for a in columns from a = 0.30 to a = 0.70, where 150 elements are defined
in z- and 100 elements in y-direction, altogether 15,000 2D-elements or relative
densities, respectively. We start with a maximum feasible distribution of mass,
i.e. z; = a for all elements. The numerical calculations are performed on a SUN
Fire V880 with eight processors running under 750 MHz and 16 GB memory.
More detailed results are shown in Table 1, where the following abbreviations
are used,

Ny, Ny - number of elements in z- and y-direction,

n - number of optimization variables,

Nt - number of iterations,

f(z) - final objective function value,

IViL(xz,u)|]| - mnorm of final gradient of Lagrangian function,
T¢ - filter radius.

As an example for an optimization problem of the form (19) with a large
number of constraints, we consider the beam structure of Figure 4. The struc-

11



Figure 2: Design Region of Beam

Y
YV Y YY
VY YVY

Figure 3: Half Beam with Varying Volume Restrictions and Filter Radii

Ny Ny n nie  flx)  |VaL(z,u)| 7y
600 400 240,000 22 52.63 1.3E-3 8
600 400 240,000 26 54.25 6.5E-4 0

1,050 700 735,000 38 54.39 4.6E-4 10
1,260 840 1,058,400 43 56.55 1.3E-5

o

Table 1: Numerical Results of SCPIP for the Half Beam
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Figure 4: Design Region of Locally Constrained Beam

ne  my  n ng f@)  |Vellzuw)l vy
270 180 48600 40 1590.2  7.7E-2 9

Table 2: Numerical Results of SCPIP for the Beam with Local Constraints

ture is fixed in y—direction at the left edge and in x—direction at the lower
right vertex. At the top and at the bottom, there is a horizontal region of
fixed material which is not allowed to be changed. The load applies equally
distributed at the top of the structure. We use a discretization of 270 x 180
finite elements such that the optimization problem (19) has 48,600 variables
and 48,601 constraints besides box-constraints. The parameter a in (19) is 0.6
in this case which includes 10% of material for the fixed regions. Starting point
is a region of full material, i.e. z; = 1 for all finite elements, which violates the
volume constraint but ensures that all local constraints are fulfilled as long as
the corresponding bounds ¢; are suitable.

Active constraints occur locally in regions of high stresses. Application of
a simple active set strategy reduces the number of constraints that must be
considered in the convex subproblems. In our example, we do not get more
than 69 constraints that are considered to be active. The idea is to define
all constraints as active ones that are active or violated in (19) subject to a
small tolerance. Moreover, constraints are considered to become active when
the corresponding Lagrangian multiplier is positive.

Some numerical results for the constrained case are shown in Figure 5 and
in Table 2. It is worthwhile to mention that the final convergence of the method
is quite slow in this case. In a practical situation, relaxed convergence checks
are applied. The iteration cycle is stopped for example, if the relative progress
in the objective function is less than 1% while retaining feasibility. A weaker
criterion would reduce the number of iterations, but has not been applied.

13



Figure 5: Optimal Topology of Locally Constrained Beam

4 Optimal Control of Semilinear Elliptic Partial
Differential Equations

The intention behind the numerical tests of this section is to show that SCP
methods can be applied also to optimization problems which are completely
different from the original mechanical engineering applications. We consider a
series of test problems investigated by Maurer and Mittelmann [9, 10] when
studying necessary optimality conditions for optimal control of elliptic partial
differential equations with state and control constraints.

Proceeding from the integration area

Q:={r=(r1,29) €ER*:0 < wy,m5 <1} ,
i.e., the unit square, and the corresponding boundary
Ii={z=(z1,22) €ER?>: 5y =00rx;=1lorzy=0o0rzy =1} ,

the optimal control problem is

i %/(y(l‘) —yd(-r))Qdmg/ u(x)?dx
Q 2 A
we I*@),ycc?@: “Mytdayu)=0, vel, o
b(z,0,y,y,u) =0, z €Tl ,

y<y, u<u<u,

Q = QUT. Here, u is the control function we want to compute subject
to constant lower and upper bounds u, @, and y denotes the state variable,
i.e., the solution of the semilinear elliptic partial differential equation Ay =
d(x,y,u) subject to either a Dirichlet or Neumann boundary condition of the
form b(x,0,y,y,u) = 0. d,y denotes the outward unit normal along the bound-
ary I'. The solution of the state equations depends on the control function u
and a state constraint for y is given in form of upper constant bounds 7. The

14



name d(y,u) ya(z) b(z,0,y,y,u)

ELL.1  -20 3+ 5x1(xy — 1)aa(xe — 1) y—u

ELL2 —20 3+ 5x1(xy — )aa(xe — 1) y—u

ELL3 —20 3+ 5z1(x1 — Dzg(za — 1) y—u

ELL4 —20 3+ 5x1(xy — 1aa(xe — 1) y—u

ELL5 0 2 —2(xy(z1 — 1) +x2(x2 — 1)) Iy — u+ y?
ELL_6 0 2 —2(x1(z1 — 1) +22(22 — 1)) 0y —u+ 9>
ELL_7 Yy —y 2—2(z1(xy — 1) +axa(z2—1)) dy—u
ELL.8 v -y 2-2(z1(x1 — 1) +a2(x2—1)) Oy—u
ELL_9 Y —y—u 1+4+2wx1(z1 —1)+a2(z2—1)) vy

ELL_10 v —y—u 1+2x(z; — 1) +a2(z2—1)) y

ELL_11 —e¥—u sin(2mx1) sin(27xs) y

ELL.12 —e¥—u sin(27xy) sin(27wxy) oy +y
ELL.13 —eY—u sin(2mx1) sin(2mxs) Oy +y

Table 3: Elliptic Control Problems: Functions

cost function is of tracking type, see Ito and Kunisch [7], and given by the
space-dependent function y4(x). « is a suitable weighting factor leading to a
bang-bang control if set to zero. In case of distributed control, the second inte-
gral is taken over the whole unit interval, i.e., A = ), and in case of boundary
control, integration is performed over the boundary, i.e., A =T.

Our set of test problems is completely described by the functions yy(z),
d(z,y,u), and b(z,0,y,y,u), see Table 3, and the data «, 7, u, and w, see
Table 4. Note that Maurer and Mittelmann [9, 10] study a more general class of
optimal control problems, but all of their test problems are of the type (21). The
first eight problems possess boundary control, the subsequent ones distributed
control functions. Example ELL_1 is taken from Bergounioux and Kunisch [3],
and examples ELL_9 and ELL_10 are related to a simplified Ginzburg-Landau
equation, see Ito and Kunisch [7].

The elliptic control problem (21) is fully discretized subject to the control
and state variables, and we apply the same discretization technique proposed
by Maurer and Mittelmann [9, 10]. First, the unit square is discretized by a
uniform mesh of size IV, to get mesh points

Ti i :(Zh,jh) ,40=0,....N4+1, 7=0,...,N+1

with h := N—+1 For each grid point, we get a discretized control variable u;; and
a discretized state variable y;;, where either ¢ =0, ..., N+1,7=0,..., N+1,
ori=1,..., N,j=1,..., N depending on the type of the boundary values,

see below. The Laplace operator is discretized by the five-point-star leading to

15



name (o] ] U U

ELL_1 0.01 - 0.0 10.0
ELL_2 0.0 - 0.0 10.0
ELL_3 0.01 3.2 1.6 2.3
ELL A4 0.0 3.2 1.6 2.3
ELL.5 0.01 2.071 3.7 4.5
ELL_6 0.0 2.835 6.0 9.0
ELL.7 0.01 2.7 1.8 2.5
ELL.8 0.0 2.7 1.8 2.5
ELL.9 0.001 0.185 1.5 4.5
ELL_10 0.0 0.185 1.5 4.5
ELL_11 0.001 0.11 -5.0 5.0
ELL_12 0.001 0.371 -8.0 9.0
ELL_13 0.0 0.371 -8.0 9.0

Table 4: Elliptic Control Problems: Data

N +1=100 N +1 =200
name n m n m
ELL_1 10197 9801 40397 39601
ELL_2 10197 9801 40397 39601
ELL_3 10197 9801 40397 39601
ELL 4 10197 9801 40397 39601
ELL_5 10593 10197 41193 40397
ELL_6 10593 10197 41193 40397
ELL_7 10593 10197 41193 40397
ELL_8 10593 10197 41193 40397
ELL.9 19602 9801 79202 39601
ELL_10 19602 9801 79202 39601
ELL_11 19602 9801 79202 39601

ELL_12 19998 10197 79998 40397
ELL_13 19998 10197 79998 40397

Table 5: Elliptic Control Problems: Dimensions
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a set of N2 equality constraints
AYij = Yij—1 = Yie1,j = Yig1 — Yir1g + h2d(@ig,yij uig) =0 . (22)

First derivatives in Neumann boundary conditions are approximated by for-
ward or backward differences, respectively, and Dirichlet boundary conditions
are directly inserted either by a constant value or the control variable. Thus,
the number of variables, n, and the number of equality constraints, m, depend
on the structure of the boundary values and are on the order of N2. The size
of the discretized state equations, m, is identical to the number of discretized
state variables and is also on the order of N2. Table 5 contains the problem
dimensions of the resulting nonlinear programming problems, see also Maurer
and Mittelmann [9, 10] for details. To compute the objective function or cost
functional, respectively, we replace the integrals in (21) by straightforward ap-
proximations at the grid points, i.e., by

2 N
Pluy) = S g i, )
s (23)

ho (XY N N N
2 2 2 2
o (et o+ Yoy + v, )
i=1 i=1 j=1 j=1
in case of boundary control and

- ha &
Mu,y) = > > (Wij — yalih, jh)* + 5 > uy (24)

i,j=1 4,j=1

in case of distributed control.
After applying the discretization procedure, the nonlinear program is of the
form
min f"(u, y)

ue R yec R™: g"(u,y) =0, (25)

with distributed parameters v and y and m nonlinear equality constraints,
g"(u,y) = (gh(u,y), ..., " (u,y))T. It is important to know that SCP methods
were not invented and investigated before to solve equality constrained prob-
lems. Convex approximation cannot be applied to equality constraints, which
are linearized by SCPIP internally, see Zillober [20].

Problem (25) is solved by the SCP code SCPIP with termination accuracy
e = 1077 for KKT condition and € = 107'° for maximum constraint violation.
Starting values are uyg = 0 and yg = 0 for all test runs. For our numerical
experiments, we use the Compaq Visual Fortran Optimizing Compiler, Version
6.5, with double precision arithmetic. The numerical results are obtained on
a PC running under Windows NT 4.0 with a Pentium II processor (450 MHz)
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which is comparable to the hardware that has been used by Maurer and Mittel-
mann [9, 10] for their tests. Tables 6 and 7 summarize the obtained performance
data, where we use the notation

N - number of mesh intervals,

Nt - number of iterations until convergence,

fu,y) - final objective function value.

CPU - CPU time until termination.

nk - number of LOQO iterations until convergence,
f(u,y)¥ - final objective function value obtained by LOQO.
CPUL - CPU time of LOQO until termination.

As far as available, we present also results published by Maurer and Mit-
telmann [9, 10]. The entry n.r. stands for not reported. We show number of
iterations, final objective function value and CPU-time only for the code LOQO,
version 4.01, since this code turned out to be the most reliable and efficient one
in the comparative evaluation of the authors. LOQO is an infeasible primal-dual
interior point algorithm, see Vanderbei and Shanno [18]. Essentially, the KKT
optimality conditions are formulated and solved by a path-following variant of
Newton’s method. The starting values are the same used for SCPIP, uy = 0
and yo = 0. In the study of Maurer and Mittelmann [9, 10], LOQO is stopped
if there are at least eight correct digits in the objective function value. Thus,
we are unable to compare also the convergence accuracy of both methods, since
the termination criteria of SCPIP are based on the KKT-conditions.

The results show that the calculation times of SCPIP are higher than those
of LOQO for problems ELL_1 to ELL_8 and significantly lower for problems
ELL.9 to ELL_13. However, problem functions for LOQO are provided in the
AMPL modeling language, see Fourer et al. [6], automatic differentiation is
applied for computing derivatives, and internal numerical calculations are quite
different, in particular the solution of systems of linear equations. For SCPIP
functions and gradients are coded directly in Fortran. Thus, a direct comparison
of calculation times must be done very carefully.

A star indicates that the corresponding problem could not be solved by the
default parameters. By adapting solution tolerances, also these problems can
be solved successfully and the performance results are reported. The objective
function values are equal or better than the values reported for LOQO. Note
that one iteration corresponds to one evaluation of all gradients. Additional
function evaluations are only needed in case of performing a linesearch, but
appear so seldom that we omit listing them.

In the discretized problem formulation (25), problems ELL_1 to ELL_4 pos-
sess strictly convex quadratic objective functions and linear constraints. It
should be stressed that the authors would never recommend SCPIP for this
situation. Problems ELL_5 and ELL_6 have additionally convex quadratic con-
straints. Additional nonlinear and nonquadratic components are added with
increasing problem number. Thus, from the point of view of optimization, the
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name Nt flu,y) CPU nk  f(u,y)r CPUTL

ELL_1 20 0.196525 476 26 0.196525 96
ELL_2 23 0.096695 600 n.r.  0.096695 78
ELL.3 43 0.321010 940 n.r. 0.321010 103
ELL_4 20 0.249178 471 n.r. 0.249178 116
ELL.5 23 0.552246 531 * n.r. 0.553324 494
ELL_6 17 0.015079 318 x  n.r. 0.015078 864
ELL.7 123 0.263910 2173+«  n.r. 0.264163 317
ELLS8 103 0.161664 1963 + n.r. 0.165531 570
ELL.9 8 0.0621646 152 30  0.0621615 1897
ELL_10 4 0.0564540 91 37 0.0564474 2169
ELL_11 11 0.110266 212 32 0.110263 2257
ELL_.12 26 0.0780640 519 23 0.0780638 1325
ELL_13 20 0.0527913 494 60  0.0544745 5735

Table 6: Elliptic Control Problems: Numerical Results for N + 1 = 100

higher the number of the problem, the harder the problem is to solve. Com-
pared to LOQO, SCPIP performs better and better with increasing complexity
of the problems. A possible reason is the specific way how sparse Jacobians are
handled inside the algorithm.

Table 8 contains some results of SCPIP when applied to problem ELL_13
with increasing mesh refinement, i.e., increasing dimensions of the optimization
problem. We observe that the total number of iterations does not increase with
the number of variables. These results are obtained on a PC running under
Windows 2000 with a Pentium IIT processor (750 MHz). Since no results are
reported for more than 200 mesh intervals for LOQO we omit CPU-times in
this table.

5 Conclusions

We introduce sequential convex programming methods, which do not update
any second-order information. Strictly convex and separable subproblems are
formulated from which a suitable search direction with respect to the design
variables and multiplier estimates are computed by an interior point method.
A subsequent line search based on the augmented Lagrangian merit function
stabilizes the optimization algorithm and allows to prove global convergence.
Starting from an arbitrary initial design, a stationary point satisfying the nec-
essary Karush-Kuhn-Tucker conditions is approximated.

To show that these methods have the potential to solve very large scale op-
timization problems, we apply the implementation SCPIP of Zillober ([21],[22])
to topology optimization problems and to optimal control problems for semi-
linear elliptic partial differential equations. It is shown that an SCP method is
capable of solving dense optimization problems with more than 10° variables.
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name Nt flu,y) CPU nk f(u,y)f  CPUTL

ELL_1 16 0.2007716 3751 29 0.200772 1477
ELL_2 24 0.1004422 6164 n.r. n.r. n.r.
ELL_3 63 0.3281215 12220 n.r. n.r. n.r.
ELL 4 26  0.2558766 7246 n.r. n.r. n.r.
ELL.5 27 0.5543687 5367 * n.r. n.r. n.r.
ELL_6 24 0.0156019 4403 x n.r. n.r. n.r.
ELL_7 103 0.2671222 20163 * n.r. n.r. n.rT.
ELL.S 153 0.1657739 31122 x n.r. n.r. n.r.
ELL_9 5 0.0645308 675 35  0.0644259 54831
ELL_10 4 0.0587030 762 45  0.0596968 67769
ELL_11 9 0.1103035 1286 31  0.1102690 42644
ELL_12 23 0.0784266 3591 25 0.0784259 43640
ELL_13 22 0.0529923 4479 84  0.0547818 137514

Table 7: Elliptic Control Problems: Numerical Results for N + 1 = 200

name N+1 n m nie  flu,y) nlLt flu,y)F
ELL_13 100 19,998 10,197 20 0.0528 60 0.0545
200 79,998 40,397 22 0.0530 &4 0.0548

300 179,998 90,597 16 0.0535 n.r. n.r.
400 319,998 160,797 18 0.0534 n.r. n.r.
500 499,998 250,997 16 0.0536 n.r. n.r.
600 719,998 361,197 16 0.0537 n.r. n.T.

Table 8: Elliptic Control Problems: Numerical Results for ELL_13
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In the second case, we get a large number of equality constraints in the dis-
cretized nonlinear program. Although SCP methods are not particularly tuned
to this situation, the code solves problems with about 720,000 variables and
about 360,000 equality constraints on a standard PC. It is shown that the code
SCPIP is at least as efficient as the code LOQO of Vanderbei and Shanno [18],
which turned out to be the best one in the comparative studies of Maurer and
Mittelmann [9, 10].
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