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Abstract

We present a brief review on one of the most powerful methods for solving smooth
constrained nonlinear optimization problems, the so-called sequential quadratic program-
ming (SQP) method. Starting during the late 70’s, global and local convergence theorems
were proved and efficient codes released. Today, SQP algorithms are the standard tool in
academia and industry to solve highly complex application problems.

Keywords: nonlinear programming, nonlinear optimization, sequential quadratic pro-
gramming, quasi-Newton, line search, trust region, filter, superlinear convergence, global
convergence

1 Introduction

We consider the nonlinear, constrained optimization problem to minimize an objective
function f under m nonlinear inequality constraints, i.e.,

minimize f(x)

x ∈ IRn : g(x) ≥ 0 ,
(1)

where x is an n-dimensional parameter vector and where g(x) := (g1(x), . . . , gm(x))T , i.e.,
we have m nonlinear inequality constraints. (1) is now called a nonlinear program (NLP)
in abbreviated form.

Equality constraints and simple bounds for the variables are omitted to simplify the
subsequent notation. They are easily introduced again whenever needed, where equality
constraints are linearized in the quadratic programming subproblem. It is assumed that
objective function f(x) and m constraint functions g1(x), . . ., gm(x) are continuously
differentiable on the whole IRn.
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Optimization theory for smooth problems is based on the Lagrangian function that
combines the objective function f(x) and the constraints g(x) in a proper way. In par-
ticular, the Lagrangian function allows us to state necessary and sufficient optimality
conditions.

Let problem (1) be given. First we define the feasible region P as the set of all feasible
solutions

P := {x ∈ IRn : g(x) ≥ 0} . (2)

and the set of active constraints with respect to x ∈ P by

I(x) := {j : gj(x) = 0, 1 ≤ j ≤ m} . (3)

The Lagrangian function of (1) is defined by

L(x, u) := f(x)− uT g(x) (4)

for all x ∈ IRn and u = (u1, . . . , um)T ∈ IRm, u ≥ 0. The variables uj are called the
Lagrangian multipliers of the nonlinear programming problem. x is also called the primal
and u the dual variable of the nonlinear program (1).

A first idea has been investigated in the Ph.D. thesis of Wilson [54]. Sequential
quadratic programming methods became popular during the late 70’s due to papers of
Han [30, 31] and Powell [38, 39]. Their superiority over other optimization methods known
at that time, was shown by Schittkowski [44]. Since then many modifications and exten-
sions have been published on SQP methods. Nice review papers are given by Boggs and
Tolle [2] and Gould and Toint [27]. All modern optimization textbooks have chapters on
SQP methods, for example see Fletcher [19], Gill et al. [25] and Sun and Yuan [46]. As
the presentation of even a selected overview is impossible due to the limited space here,
we concentrate on a few important facts and highlights from a personal view without any
attempt to be complete.

The basic ideas of sequential quadratic programming methods are found in Section 2.
The role of quasi-Newton updates is outlined in Section 3. Several stabilization proce-
dures are available by which convergence is guaranteed, e.g., line search, see Section 4,
trust regions, see Section 5, or filter techniques, see Section 6. Some typical convergence
results for global convergence, i.e., convergence towards a stationary point starting from
an arbitrary point, and local convergence, fast final convergence speed close to a solution,
are listed in Section 7.

2 Sequential Quadratic Programming Methods

Sequential quadratic programming or SQP methods belong to the most powerful opti-
mization algorithms we know today for solving differentiable nonlinear programs of the
form (1). The theoretical background is described for example in Stoer [47], and an ex-
cellent review is given by Boggs and Tolle [2]. From a more practical point of view, SQP
methods are also introduced in the books of Papalambros and Wilde [37] and Edgar and
Himmelblau [16], among many others. Their excellent numerical performance has been
tested and compared with other methods, see Schittkowski [44], and for many years they
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belong to the set of most frequently used algorithms for solving practical optimization
problems.

The basic idea is to formulate and solve a quadratic programming subproblem in
each iteration which is obtained by linearizing the constraints and approximating the
Lagrangian function L(x, u) (4) quadratically. Starting from any x0 ∈ IRn, suppose that
xk ∈ IRn is an actual approximation of the solution, vk ∈ IRm an approximation of the
multipliers, and Bk ∈ IRn×n an approximation of the Hessian of the Lagrangian function,
k = 0, 1, 2, . . .. Then, a quadratic program (QP) of the form

minimize 1
2 d

TBkd+∇f(xk)Td
d ∈ IRn : ∇g(xk)T d+ g(xk) ≥ 0

(5)

is formulated and solved in each iteration. To simplify the subsequent presentation, we
assume that (5) is always solvable. Let dk be the optimal solution, uk the corresponding
multiplier of this subproblem. A new iterate is then obtained by

xk+1 := xk + dk (6)

and, for the moment, vk+1 := uk.
To motivate the above approach, let us assume that there are only equality constraints

of the form g(x) = 0 instead of g(x) ≥ 0. The Karush-Kuhn-Tucker optimality conditions
are then written in the form

F (x, u) :=

( ∇xL(x, u)

g(x)

)
= 0 .

In other words, the optimal solution and the corresponding multipliers are the solution
of a system of n+m nonlinear equations F (x, u) = 0 with n+m unknowns x ∈ IRn and
u ∈ IRm.

Let (xk, vk) be an approximation of the solution. We apply Newton’s method and get
an estimate for the next iterate by

∇F (xk, vk)
(
dk
yk

)
+ F (xk, vk) = 0 .

After insertion, we obtain the equation(
Bk : −∇g(xk)

∇g(xk)T : 0

)(
dk
yk

)
+

(∇f(xk)−∇g(xk)vk
g(xk)

)
= 0 (7)

with Bk := ∇xxL(xk, vk). Defining now uk := yk + vk, we get

Bkdk −∇g(xk)uk +∇f(xk) = 0

and
∇g(xk)T dk + g(xk) = 0 .

But these equations are exactly the optimality conditions for the quadratic program for-
mulated for equality constraints only. To sum up, we get the following conclusion.
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A sequential quadratic programming method is identical to Newton’s method
for solving the KKT optimality conditions, if Bk is the Hessian of the La-
grangian function and if we start sufficiently close to a solution.

Now we assume again that we have inequality constraints instead of the equality ones.
A straightforward analysis based on the optimality conditions shows that if dk = 0 is an
optimal solution of (5) and uk the corresponding multiplier vector, then xk and uk satisfy
the necessary optimality conditions of (1).

Note that the above analysis also serves to point out the crucial role of the dual variable
uk. To get a fast convergence rate as expected for Newton’s method, we have to adapt
the multiplier values accordingly together with the primal ones.

To avoid the computation of second derivatives, Bk is set to a positive-definite approx-
imation of the Hessian of the Lagrangian function. For the global convergence analysis,
any choice of Bk is appropriate as long as the eigenvalues are bounded away from zero.
However, to guarantee a superlinear convergence rate, we update Bk by a quasi-Newton
method, e.g., the BFGS formula

Bk+1 := Bk +
yky

T
k

sTk yk
− Bksks

T
kBk

sTkBksk
(8)

with
yk := ∇xL(xk+1, uk)−∇xL(xk, uk) ,

sk := xk+1 − xk .
(9)

Usually, we start with the unit matrix for B0 and stabilize the formula by requiring
that aTk bk ≥ 0.2 bTkBkbk. Positive definite matrices Bk guarantee unique solutions and in
addition a sufficient descent property of a merit function needed for the global convergence
analysis.

Moreover, it is possible to proceed from a Cholesky factorization of Bk in the form

Bk = LkL
T
k

with a lower triangular matrix Lk and to update Lk directly to get a factorization of Bk+1,
see Gill et al. [23],

Bk+1 = Lk+1L
T
k+1 = LkL

T
k + aka

T
k − bkb

T
k .

A particular advantage is that an initial Cholesky decomposition is avoided, if a primal-
dual method is applied to solve the quadratic program (5).

Note that the above motivation proceeds from a local approximation of a solution.
If starting from an arbitrary x0 ∈ IRn, v0 ∈ IRm, one has to stabilize the algorithm by
introducing additional safeguards, e.g., a line search, a trust region, or a filter. These
three possibilities are discussed in the subsequent sections.

3 Reduced Hessian SQP Steps

The linear system (7) derived from the quadratic program subproblem can be rewritten
as ⎛

⎝ Y T
k BkYk Y T

k BkZk −Rk

ZT
k BkYk ZT

k BkZk 0
−RT

k 0 0

⎞
⎠
⎛
⎝ pk

qk
yk

⎞
⎠ =

⎛
⎝ −Y T

k ∇f(xk)
−ZT

k ∇f(xk)
g(xk)

⎞
⎠ , (10)
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if we have the QR factorization

∇g(xk) = (Yk, Zk)

(
Rk

0

)
,

and if we use the notation pk = Y T
k dk and qk = ZT

k dk. Thus, it is easy to see that pk and
qk can be obtained by(

ZT
k BkYk ZT

k BkZk

−RT
k 0

)(
pk
qk

)
=

( −ZT
k ∇f(xk)
g(xk)

)
, (11)

which indicates that we only need the reduced matrix ZT
k Bk instead of the full matrix Bk

to compute the QP step dk. Hence, Nocedal and Overton [35] suggest to replace ZT
k Bk

by a quasi-Newton matrix B̄k, and to obtain the QP step dk by solving(
B̄k

−∇g(xk)T
)
d =

(−ZT
k ∇f(xk)
g(xk)

)
. (12)

The matrix B̄k ∈ IR(n−m)×n is a quasi-Newton matrix that approximates ZT
k ∇2

xxL(xk, uk),
which can be updated by the Broyden’s unsymmetric Rank-1 formula

B̄k+1 := B̄k +
(ȳk − B̄ksk)s

T
k

||sk||22
,

where sk := xk+1−xk and ȳk := ZT
k+1∇f(xk+1)−ZT

k ∇f(xk). This approach can be more
efficient than the standard SQP because it reduces storage and calculation due to the fact
that it uses a reduced matrix Bk ∈ IR(n−m)×n instead of the full matrix Bk, particularly
whenm is close to n, namely for problems there are lots of variables and lots of constraints
but less freedom in the variables. Moreover, this approach preserve the q-superlinearly
convergent property of the standard SQP step, for example see Nocedal and Overton [35].

We move along this direction further. If we replace ZT
k BkZk by a quasi-Newton matrix

B̂k and replace ZT
k BkYk by zero in the linear system (11), we obtain(

0 B̂k

−RT
k 0

)(
pk
qk

)
=

( −ZT
k ∇f(xk)
g(xk)

)
. (13)

The reason for doing so is that Powell [38] discovered that the SQP method converges
2-step Q-superlinearly,

lim
k→∞

||xk+1 − x∗||
||xk−1 − x∗|| = 0 (14)

provided that Y T
k BkZk is bounded. An advantage of this approach which is called two-side

reduced Hessian method, compared to Nocedal and Overton’s one-side reduced Hessian
method, is that the matrix B̂k is a square matrix and can be kept positive definite by
updates such as the BFGS formula. Furthermore, the computation cost is also reduced.
But, the price we have to pay is that we can only prove 2-step Q-superlinear convergence
(14) instead of the one-step Q-superlinear convergence. Indeed, examples exist to show
that the 2-step Q-superlinear convergence of the two-side reduced Hessian method can
not be improved to one-step Q-superlinear convergence, for example, see Byrd [4] and
Yuan [56].
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4 Stabilization by Line Search

We have seen in the previous sections that one should better approximate the actual
primal and dual variables simultaneously to satisfy the optimality conditions of (1) based
on the Newton method. Thus, we define zk := (xk, vk), where xk ∈ IRn and vk ∈ IRm are
approximations of a KKT point in the k-th step. A new iterate is then computed from

zk+1 := zk + αkpk , (15)

where pk := (dk, yk) = (dk, uk − vk) is the search direction obtained from solving the
quadratic program (5), see also (7), and where αk is a scalar parameter called the
steplength. The goal is to compute a sufficiently accurate stepsize within as few function
evaluations as possible, so that the underlying algorithm converges. αk should satisfy at
least a sufficient decrease condition of a merit function

φr(α) := ψr

((
x
v

)
+ α

(
d

u− v

))
(16)

with a suitable penalty function ψr(x, v) and with r = (r1, . . . , rm)T ∈ IRm, a vector of m
positive penalty parameters.

A merit function is supposed to contain information about the objective function to
be minimized, and the violation of constraints. The first one studied in the context of
SQP methods was the L1 penalty function

ψr(x, v) := f(x) +

m∑
j=1

rjgj(x)
− , (17)

where gj(x)
− := −min(0, gj(x)) denotes violated constraints, see Han [31]. ψr(x, v) is

a so-called exact penalty function, i.e., a minimizer of ψr(x, v) subject to x for suffi-
ciently large r is also a solution of NLP. But there are two severe drawbacks: ψr(x, v) is
non-differentiable preventing efficient algorithms and, since ψr(x, v) does not depend on
multiplier information, it enables the Maratos-effect [32], i.e., the possibility of very slow
convergence close to a solution.

Instead of (17), augmented Lagrangian merit functions

ψr(x, v) := f(x)− vT g(x) +
1

2

m∑
j=1

rjgj(x)
2 (18)

are an appropriate alternative which differ by the choice of the multiplier approximation,
see Boggs and Tolle [2] or Gill et al. [24]. A slightly different augmented Lagrangian
function is given by

ψr(x, v) := f(x)−
∑
j∈J

(vjgj(x)− 1

2
rjgj(x)

2)− 1

2

∑
j∈K

v2j /rj (19)

with J := {j : 1 < j ≤ m, gj(x) ≤ vj/rj} and K := {1, . . . ,m} − J , cf. Schittkowski [45]
and Rockafellar [43], but very many other merit functions have been investigated in the
past.
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In all cases, the objective function is penalized as soon as an iterate leaves the feasible
domain. The corresponding penalty parameters rj , j = 1, . . ., m, which control the degree
of constraint violation, must be carefully chosen to guarantee a descent direction of the
merit function, see Schittkowski [45] or Wolfe [55] in a more general setting, i.e., to achieve
at least

φ′rk(0) = �ψrk(xk, vk)
T

(
dk

uk − vk

)
< 0 (20)

when applied in the k-iteration step.
The implementation of a line search algorithm is a crucial issue when implementing a

nonlinear programming algorithm, and has significant effect on the overall efficiency of the
resulting code. On the one hand, we need a line search to stabilize the algorithm. On the
other hand, it is not desirable to waste too many function calls. Moreover, the behavior of
the merit function becomes irregular in case of constrained optimization because of very
steep slopes at the border caused by large penalty terms. The implementation is more
complex than shown above, if linear constraints and bounds of the variables are to be
satisfied during the line search.

Usually, the steplength parameter αk is chosen to satisfy a certain Armijo [1] condition,
i.e., a sufficient descent condition of a merit function, which guarantees convergence to a
stationary point. However, to take the curvature of the merit function into account, we
need some kind of compromise between a polynomial interpolation, typically a quadratic
one, and a reduction of the stepsize by a given factor, until a stopping criterion is reached.
Since φr(0), φ

′
r(0), and φr(αi) are given, αi the actual iterate of the line search procedure,

we easily get the minimizer of the quadratic interpolation. We accept then the maximum
of this value and the Armijo parameter as a new iterate, as shown by the subsequent code
fragment.

Algorithm 4.1. Let β, μ with 0 < β < 1, 0 < μ < 0.5 be given.

Start: α0 = 1

For i = 0, 1, 2, . . . do:

1) If φr(αi) < φr(0) + μ αi φ
′
r(0), then stop.

2) Compute ᾱi :=
0.5 α2

i φ
′
r(0)

αiφ′r(0)− φr(αi) + φr(0)
.

3) Let αi+1 := max(β αi, ᾱi).

The algorithm goes back to Powell [38] and corresponding convergence results are
found in Schittkowski [45]. ᾱi is the minimizer of the quadratic interpolation, and we use
the Armijo descent property for checking termination. Step 3 is required to avoid irregular
values, since the minimizer of the quadratic interpolation could be outside of the feasible
domain (0, 1]. Additional safeguards are required, for example to prevent violation of
bounds. Algorithm 4.1 assumes that φr(1) is known before calling the procedure, i.e.,
that the corresponding function values are given. We stop the algorithm, if sufficient
descent is not observed after a certain number of iterations. If the tested stepsize falls
below machine precision or the accuracy by which model function values are computed,
the merit function cannot decrease further.
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It is possible that φ′r(0) becomes negative due to round-off errors in the partial deriva-
tives or that Algorithm 4.1 breaks down because to too many iterations. In this case, we
proceed from a descent direction of the merit function, but φ′r(0) is extremely small. To
avoid interruption of the whole iteration process, the idea is to repeat the line search with
another stopping criterion. Instead of testing (20), we accept a stepsize αk as soon as the
inequality

φrk(αk) ≤ max
k−p(k)<=j<=k

φrj (0) + αkμφ
′
rk
(0) (21)

is satisfied, where p(k) is a non-decreasing integer with p(k) := min{k, p}, p a given
tolerance. Thus, we allow an increase of the reference value φrjk (0) in a certain error
situation, i.e., an increase of the merit function value.

To implement the non-monotone line search, we need a queue consisting of merit func-
tion values at previous iterates. In case of k = 0, the reference value is adapted by a
factor greater than 1, i.e., φrjk (0) is replaced by tφrjk (0), t > 1. The basic idea to store
reference function values and to replace the sufficient descent property by a sufficient ’as-
cent’ property in max-form, is described in Dai [11] and Dai and Schittkowski [12], where
convergence proofs are presented. The general idea goes back to Grippo, Lampariello,
and Lucidi [29], and was extended to constrained optimization and trust region methods
in a series of subsequent papers, see, e.g., Toint [49, 50].

5 Stabilization by Trust Regions

Another globalization technique for nonlinear optimization is trust region, where the next
iterate requires to be in the neighborhood of the current point, namely ||xk+1−xk|| ≤ Δk,
where Δk > 0 is the trust region radius updated from iteration to iteration. Thus, an
essential constraint of a trust region subproblem is

‖d‖2 ≤ Δk . (22)

But, simply adding the trust region constraint (22) to the quadratic program (5) may
lead to an infeasible subproblem. There are mainly three approaches in constructing
trust region subproblems. To simplify our discussions, first we consider only equality
constraints.

The first approach is the null-space technique, which was studied by many authors,
including Vardi [53], Byrd, Schnabel and Shultz [5], and Omojokun [36]. In this approach,
the trial step sk consists of a range space step vk and the null space step hk. vk reduces
the linearized constraint ||∇g(xk)Td + g(xk)|| and hk reduces the approximate Lagrange
function in the null space of ∇g(xk)T . For example, vk can be the least norm solution of

minimize ||∇g(xk)T v + g(xk)||22 (23)

v ∈ IRn : ||v||2 ≤ δΔk ,

where δ ∈ (0, 1) is a given constant. The parameter δ < 1 leaves freedom for defining hk.
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Once vk is computed, hk can be obtained by solving

minimize 1
2 (vk + h)TBk(vk + h) +∇f(xk)Th

h ∈ IRn : ∇g(xk)Th = 0 (24)

||h||2 ≤ √
1− δ2Δk .

The trust region step sk := vk + hk obtained by the null space technique can be regarded
as the solution of the quadratic program

minimize 1
2 d

TBkd+∇f(xk)Td
d ∈ IRn : ∇g(xk)Td+ θkg(xk) = 0 (25)

‖d‖2 ≤ Δk

for some parameter θk ∈ (0, 1].
The second approach is to replace all the linearized constraints in (5) by a single

quadratic constraint, which was proposed by Celis, Dennis and Tapia [7],

minimize 1
2 d

TBkd+∇f(xk)T d
d ∈ IRn : ||∇g(xk)T d+ g(xk)||2 ≤ ξk (26)

||d||2 ≤ Δk ,

where ξk ≥ min||d||2≤Δk
||∇g(xk)T d + g(xk)||2 to ensure the subproblem is feasible. One

particular choice for ξk is given by Powell and Yuan [42]:

min
||d||2≤δ1Δk

||∇g(xk)T d+ g(xk)||2 ≤ ξk ≤ min
||d||2≤δ2Δk

||∇g(xk)Td+ g(xk)||

where 0 < δ2 < δ1 < 1 are two constants.
The third type of trust region subproblems is to minimize an approximation of some

penalty function. Based on the L∞ exact penalty, Yuan [58] suggests

minimize Φk(d) :=
1
2 d

TBkd+∇f(xk)Td+ σk||∇g(xk)T d+ g(xk)||∞ (27)

d ∈ IRn : ||d||∞ ≤ Δk ,

which can be converted into a standard QP. The penalty parameter σk > 0 may need to
be updated to ensure the sufficient reduction in the norm of the residuals of linearized
constraints. The L∞ penalty function in (27) can be replaced by any other penalty
functions, including the augmented Lagrange function studied by Niu and Yuan [34]. For
example, if we use the L1 penalty function, it leads to the famous Sl1QP method given
by Fletcher [17].

Once the trial step sk is computed, a trust region algorithm for constrained optimiza-
tion can be given as follows.

Algorithm 5.1. (A General Trust Region SQP Method)
Let 0 < τ3 < τ4 < 1 < τ1, 0 < τ2 < 1, and x0 ∈ IRn be given.
For k = 0, 1, 2, . . . until convergence do
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1) Compute the trial step sk.

2) Compute the ratio between actual reduction and predicted reduction in a merit func-
tion Ψk,

rk :=
Ψk(xk)−Ψk(xk + sk)

Predk

3) Let

xk+1 :=

{
xk + sk if rk > 0,

xk otherwise,

and

Δk+1 ∈
{

[τ3||sk||2, τ4Δk] if rk < τ2,

[Δk, τ1Δk] otherwise.

4) Update Bk+1 and define Ψk+1(x).

For different trust region algorithms, Predk and Ψk(x) have to be chosen accordingly.
For the L∞ trust region algorithm of Yuan [58], we have that

Ψk(x) := f(x) + σk||g(x)||∞
and

Predk := Φk(0)− Φk(sk) ,

where Φk(d) is defined in (27). The general requirements for Predk are that it is always
positive and it is a good approximation to the actual reduction in the merit function,
particularly near the solution.

Unless the merit function Ψk(x) is a differentiable penalty function, Maratos effect will
occur. Thus, it is necessary to try a second order correction step ŝk whenever the standard
trust region trial step sk is not acceptable. Normally, the second order correction step ŝk
is computed by solving another subproblem which is a slightly modification of the trust
subproblem for obtaining sk. For example, if sk is obtained by (27), we can compute ŝk
by solving the following second order correction subproblem,

minimize 1
2 (sk + d)TBk(sk + d) +∇f(xk)T d+ σk||∇g(xk)Td+ g(xk + sk)||∞ (28)

d ∈ IRn : ||sk + d||∞ ≤ Δk .

As the new subproblem differs from the original subproblem only by a term g(xk + sk)−
g(xk) − ∇g(xk)T sk which is of magnitude of ||sk||2, one can easily show that ‖ŝk‖ =
O(‖sk‖2), hence adding ŝk will retain the nice superlinearly convergent property of the
SQP step sk. More important is that the second order correction step ŝk will always make
the merit function accept the new point xk + sk + ŝk when xk is close to the solution,
which was first proved by Yuan [57].

Now, we give a brief discussion about inequality constraints. The inequality constraints
in (1) can be transformed into equality constraints

g(x) − s = 0
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by introducing slack variables s = (s1, ..., sm)T ∈ IRm, with the additional non-negative
constraints:

s ≥ 0. (29)

The non-negative constraints (29) can be handled by the log-barrier function or by scaled
trust region techniques, for example see Dennis, Heinkenschloss and Vincent [13], Coleman
and Li [9], and Byrd, Gilbert and Nocedal [6].

For detailed discussions about trust region SQP methods, we recommend the related
chapters in the monograph by Conn, Gould and Toint [10] and the review paper of
Yuan [59].

6 Stabilization by a Filter

Filter method was first given by Fletcher and Leyffer [20]. This approach is based on
viewing the constrained optimization problem (1) as two separate minimization problems,

minimize f(x)

x ∈ IRn

and
minimize h(g(x))

x ∈ IRn ,

where

h(g(x)) := ||g−(x)||1 =

m∑
j=1

|min(0, gj(x))| .

For each iterate point xk, there is a corresponding pair

(fk, hk) = (f(xk), ||g−(xk)||1) ,

see the subsequent sketch.

�

�
(0,0)

f

h

�

�

(fk, hk)
�
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The concept of domination is crucial for the filter method.

Definition 6.1. A pair (fk, hk) is said to dominate another pair (fl, hl) if and only if
both fk < fl and hk < hl.

The idea of the filter approach is that a new point is acceptable as long as it is not
dominated by any previous iterates. Such an acceptable point will be added to the filter
which is used to control subsequent iterates.

Definition 6.2. A filter is a list of pairs (fl, hl) such that no pair dominates any other.
A point (fk, hk) is said to be acceptable for inclusion in the filter if it is not dominated by
any point in the filter.

At each iteration, a Filter-SQP algorithm needs to construct a QP subproblem. Fletcher
and Leyffer [20] uses the subproblem

minimize 1
2 d

TBkd+∇f(xk)Td
d ∈ IRn : ∇g(xk)Td+ g(xk) ≥ 0 (30)

||d||∞ ≤ Δk .

The outlines of a general filter-SQP algorithm can be stated as follows.

Algorithm 6.1. (A General Filter-SQP Algorithm)
Given x0 ∈ IRn, let k := 1. Let the initial filter be the pair {(f0, h0)}.
For k = 0, 1, 2, . . . until convergence do

1) Solve the QP subproblem obtaining dk.

2) Provisionally set xk+1 := xk + dk.

3) If (fk+1, hk+1) is dominated by some pair in the filter then xk+1 := xk. Other-
wise, accept xk+1, add (fk+1, hk+1) to the filter and remove all points dominated by
(fk+1, hk+1) from the filter.

4) Construct the QP subproblem for the next iteration.

It is well known that when using a penalty function to ensure global convergence
of nonlinear optimization algorithms, we normally require some sufficient decrease in
the penalty function. Similarly, in the implementation of a filter method, the simple
domination has to be replaced by some sufficient domination. Fletcher and Leyffer [20]
suggest to accept the provisional point xk+1 to the filter if either

hk+1 ≤ 0.99hl

or
fk+1 ≤ fk −max(0.25Δql, 10

−4hlμl)

holds for all filter entries l, where Δql := −1
2d

T
l Bldl−∇f(xl)Tdl is the predicted reduction

of f(x) based on the quadratic model, λl is the Lagrange multiplier of (30), and μl is the
projection of the least power of ten larger than ||λl||∞ in the interval [10−6, 106].
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The trust region QP subproblem (30) may become infeasible, either because the trust
region radius Δk is too small or due to the inconsistent of the linearized constraints. Thus,
a restoration phase have to be used to move the iterate towards the feasible region. This
is achieved by minimizing the norm of the residuals of the linearized constraints in the
trust region.

7 Convergence

There remains the question whether the convergence of an SQP method can be proved in a
mathematically rigorous way. In fact there exist numerous theoretical convergence results
in the literature, see e.g. Boggs and Tolle [2]. We want to give here only an impression
about the type of these statements, and repeat some results that have been stated in the
early days of the SQP methods.

In the first case we consider the global convergence behavior, i.e., the question, whether
the SQP methods converges when starting from an arbitrary initial point. Suppose that
the augmented Lagrangian merit function (18) is implemented and that the primal and
dual variables are updated in the form (15).

Theorem 7.1. Let {(xk, vk)} be a bounded iteration sequence of the SQP algorithm with
a bounded sequence of quasi-Newton matrices {Bk} and assume that

dTkBkdk ≥ γdTk dk (31)

for all k and a γ > 0. Then there is an accumulation point of {(xk, vk)} satisfying the
Karush-Kuhn-Tucker conditions for (1).

The statement of the theorem is quite weak. But without any further information
about second derivatives, we cannot guarantee that the approximated point is indeed a
local minimizer.

To investigate now the local convergence speed, we start from an initial x0 ∈ IRn

sufficiently close to an optimal solution. Normally, we find the following assumptions for
local convergence analysis.

Assumption 7.1. Assume that

1) xk → x∗,

2) f(x), g1(x), . . . , gm(x) are at least twice continuously differentiable,

3) gi(x
∗) = 0 for i = 1, . . . ,m, i.e., we know all active constraints,

4) ∇gi(x∗) are linearly independent for i = 1, . . . ,m, i.e., the constraint qualification
is satisfied,

5) x∗ is a KKT point and u∗ is the corresponding Lagrange multiplier,

6) The inequality
dT∇2

xxL(x
∗, u∗)d > 0

holds for all non-zero vectors d satisfying ∇g(x∗)T d = 0, i.e., a second order suffi-
cient condition is satisfied.

13



The fundamental result for local convergence analysis of SQP methods is the following
theorem.

Theorem 7.2. Assume that the conditions in Assumption 7.1 are satisfied. Let dk be the
solution of

minimize 1
2d

TBkd+∇f(xk)Td (32)

d ∈ IRn : ∇g(xk)Td+ g(xk) = 0 .

Then, the limit

lim
k→∞

||xk + dk − x∗||
||xk − x∗|| = 0 (33)

holds if and only if

lim
k→∞

||Pk(Bk −∇2
xxL(x

∗, u∗)dk||
||dk|| = 0 (34)

where Pk is the projection from IRn onto the null space of ∇g(xk)T , and ∇2
xxL(x

∗, u∗) is
the Hessian of the Lagrangian at the solution x∗.

This important result was first given by Boggs, Tolle and Wang [3] and Powell [40]. A
nice proof for this result can be found in Stoer and Tapia [48]

In order to apply Theorem 7.2 to establish suplinearly convergence results for various
SQP methods, the general approach is to prove that xk+1 = xk + dk holds eventually,
where dk is the solution for the QP subproblem (32). Thus, for line search SQP methods
we need to prove that the unit step-length αk = 1 can be accepted by the correspoding line
search conditions. While for trust region SQP algorithms, one has to show that the trust
region constraint ||d|| ≤ Δk will be inactive and the dk can be accepted by the algorithm
for all large k. And, for filter SQP algorithms, it is required to show that xk + dk will be
accepted by the filter for all large k.

However, no matter line search or trust region is used for globalization of the SQP
method, due to the Maratos effect, xk + dk may not be accepted though (33) is true,
when the merit function is a non-smooth exact penalty function. Even for filter meth-
ods, Maratos efffect can also happen because a superlinearly convergent SQP step dk can
sometimes increase both the objective function f and the constraint violations h(g). To
overcome the Maratos effect, there are many techniques, which can be grouped into four
categories. The first one is the watch-dog technique, in which standard line search condi-
tions are relaxed at some iterations. The watchdog technique was proposed by Chamber-
lain et. al [8]. The second is the second order correction technique, where an additional
subproblem is solved to obtain an accepted full step, for example see Fletcher [18], Mayne
and Polak [33] and Fukushima [22]. The third is to use a smooth exact penalty function or
the augmented Lagrange function as the merit function, for example see Schittkowski [45],
Powell and Yuan [41, 42], and Ulbrich [51]. The fourth is the non-monotone technique,
for example, see Ulbrich and Ulbrich [52], and Gould and Toint [28].

From the characterization of the local convergence property of the SQP method given
in Theorem 7.2, the superlinearly convergence of a specific SQP method depends on
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the relation (34), which is, generally, hard to verify directly if Bk is updated by quasi-
Newton updates. The standard approach is more or less following the sophisticated and
elegant technique for analyzing quasi-Newton methods for unconstrained optimization
given by Dennis and Moré [14, 15]. Their technique is to prove the local Q-superlinearly
convergence by two steps. The first step is to show that the sequence {xk} converges
R-linearly. Then, the R-linear convergence of the sequence is used to obtain more local
convergence properties, such as the following relations

∞∑
k=1

||xk+1 − xk|| <∞ ,

∞∑
k=1

||xk − x∗|| <∞ ,

the uniformly boundedness of Bk and B−1
k , and the limit (34), in order to establish the

Q-superlinear convergence of the sequence {xk}.
However, for a given specific quasi-Newton method, there is still a gap to apply the

beautiful convergence results discussed above. For example, it is not easy to know whether
condition (31) holds for a particular quasi-Newton updates. Moreover, to ensure the up-
date formulae generate positive definite matrices, we always require sTk yk > 0, a condition
is normally satisfied for unconstrained optimization. However, for constrained optimiza-
tion problems, as the solution (x∗, u∗) is only a saddle point of the Lagrange function, the
vector yk defined by (9) can not guarantee sTk yk > 0. Powell [39] suggests replacing yk by
the vector

ȳk =

⎧⎨
⎩
yk, if sTk yk > 0.2sTkBksk ,

tkyk + (1− tk)Bksk, otherwise ,
(35)

where tk = 0.8sTkBksk/(s
T
kBksk − sTk yk). With this modification, Powell [39] proved the

following remarkable result for the SQP method with BFGS update.

Theorem 7.3. Assume that the above assumptions are valid and αk = 1 for all k. Then
the sequence {xk} converges R-superlinearly, i.e.,

lim
k→∞

‖xk+1 − x�‖1/k = 0 .

TheR-superlinear convergence speed of {xk} is somewhat weaker than theQ-superlinear
convergence rate of {zk := (xk, vk)} defined below which was first proved in the form

lim
k→∞

‖zk+1 − z�‖
‖zk − z�‖ = 0

for the so-called DFP update formula, i.e. a slightly different quasi-Newton method. In
this case, we get a sequence βk tending to zero with

‖zk+1 − z�‖ ≤ βk‖zk − z�‖ .

But, it should be noted that the Q-superlinear convergence of zk does not imply the
Q-superlinear convergence of xk.
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