Optimal Design of Electronic Components
by Mixed-Integer Nonlinear

Programming

G. van de Braak!, M. J. Biinner?, K. Schittkowski®

Abstract

Computer-aided design optimization of electronic components is a powerful
tool to reduce development costs on one hand and to improve the performance
of the components on the other. In this paper, a mathematical model of an
electronic filter is outlined. It depends on certain parameters, some of them
of being continuous, others of integer type. The purpose of the paper is to
introduce an extension of the well-known sequential quadratic programming
(SQP) method to solve the mixed-integer programming problem (MINLP).
It is assumed that the integer variables cannot be relaxed to real ones, that
the integer range is sufficiently large, and that they possess some physical
meaning so that they basically behave like continuous ones. The general idea
is to combine an SQP step with a direct search cycle in the integer space.
Hessian information is updated based on difference formulae at neighbored
grid points. Numerical results are included to show the feasibility of the
mixed-integer nonlinear programming code for academic test examples and in
addition for the optimal design of an electronic filter.
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1 Introduction

A bandpass filter selects a band of frequencies out of the electro-magnetic spec-
trum. In this paper, we consider surface-acoustic-wave (SAW) filters consisting of a
piezo-electric substrate, where the surface is covered by metal structures [19]. The
incoming electrical signal is converted to a mechanical signal by this setup. The
SAW filter acts as a transducer of electrical energy to mechanical energy and vice
versa. The efficiency of the conversion depends strongly on the frequencies of the
incoming signals and the geometry parameters of the metal structures, for exam-
ple length, height, etc. On this basis, the characteristic properties of a filter are
achieved.

Surface acoustic waves (SAWs) have been described for the first time by Lord
Rayleigh in 1885 in combination with the scientific description of earthquakes. SAWs
were technically used for the first time in the 1960s for military purposes. Later,
SAW-bandpass filters entered the market for TV applications. Due to small physical
sizes and unique electrical properties, SAW-bandpass filters raised tremendous in-
terest in mobile phone applications. The large demand of the mobile phone industry
is covered by large-scale, industrial mass-production of SAW-filters.

For industrial applications, bandpass filters are designed in order to satisfy pre-
defined electrical specifications. The art of filter design consists of defining the
internal structure, or the geometry parameters, respectively, of a filter such that the
specifications are satisfied. Bandpass filters are designed with the help of computer-
aided-engineering (CAE) techniques. The electrical properties of the filters are sim-
ulated based on physical models. The simulation of a bandpass filter consists of

1. the acoustic tracks, i.e., the areas on the piezo-electrical substrate on which
the electrical energy is converted to mechanical vibrations and vice versa,

2. the electrical combinations of the different acoustic tracks.

Typically, only the properties of the acoustic tracks are varied during the design
process, and are defined by several physical parameters. Some of them are given in
form of real numbers, some others in form of integer numbers. As soon as the filters
properties fit to the demands, the mass production of the filter is started.

To describe an acoustic track mathematically, Tobolka [39] introduced the P-
matriz model in 1979. Different sections of the acoustic track are described by
different P-matrices, which reflect the physics of that section. The P-matrices de-
pend on the geometry parameters of the acoustic tracks. Based on these P-Matrices,
the scattering matrix, that describes the electrical properties of the band-pass filter,
can be derived.

Once the scattering matrix is computed, the transmission of a filter is obtained
as a function of frequency. Geometry parameters of the filter are considered as in-
dependent variables to be optimized. Objective function to be maximized is the



minimum of the transmission within a given range, and constraints are lower trans-
mission bounds in some outer frequency ranges. The continuous max-min optimiza-
tion problem is transformed into a smooth, nonlinear optimization problem, and
can be solved by an available nonlinear programming algorithm, for example by the
code NLPQL of Schittkowski [35].

Because of the highly complex computations needed for establishing the scatter-
ing matrix, the number of iterations must be as low as possible. Since the applied
numerical methods require first derivatives of nonlinear model functions, it is neces-
sary to approximate them numerically by forward differences, an additional burden
for the numerical complexity of the described approach. Sequential quadratic pro-
gramming (SQP) methods, for example NLPQL, are well established algorithms for
problems of the type considered, see for example Hartwanger et al. [15] for a quite
similar application, where the geometric parameters of corrugated antenna horns
are optimized. Comparative performance evaluations for more general classes of
optimization problems, are found in Schittkowski [32] and Hock, Schittkowski [16].

However, the situation becomes much more complex if additional integer vari-
ables must be taken into account, for example the number of metallized layers of
a filter. Instead of a trial-and-error approach, we propose a more generally appli-
cable procedure for the simultaneous adoption of all parameters, the discrete and
the continuous ones. There are numerous proposals on how to solve mixed-integer
nonlinear programs, see for example Floudas [9] or Grossmann and Kravanja [12] for
reviews. Typically, all these approaches require convex model functions, a limited
range of the integer variables, and/or continuous relaxations of integer variables.
By a continuous relaxation, we understand that integer variables can be treated as
continuous variables, i.e., function values can also be computed in a small neighbor-
hood of an integer value, for example to approximate gradients numerically subject
to an integer term.

But all these conditions are violated in the present situation, in which the model
functions are highly nonlinear and non-convex. We have relatively large ranges
for integer values, and it is impossible to get sufficiently accurate approximations
of derivatives of integer variables. Our proposal is based on the idea to compute
successively optimal solutions with respect to the continuous variables under the
assumption that all integer variables are fixed. For simplicity, we suppose that a
global solution is always obtained. Starting from a given set of integer variables,
objective function values at neighboring grid points are evaluated, again based on
a complete optimization cycle with respect to the continuous variables. Then we
formulate a quadratic approximation in the integer space by a second order difference
formula, compute a minimal solution by a continuous quadratic programming code,
round the values obtained, and restart the procedure.

It is possible that the quadratic approximation in the integer space does not
yield a positive definite matrix or that the solution of the quadratic program is
not different from the actual iterate in integer space, or too close leading to an
infinite loop. In these cases, the quadratic approximation does not lead to further



improvement, and a direct search method is locally applied along the axes of the
integer variables with the goal to find an improved approximation.

We assume that the integer variables possess some physical meaning and are
continuous in some sense. A slight alteration of an integer value, say by one, changes
the model functions only slightly, at least much less that a more drastic change. A
typical practical situation is considered in the paper, the number of fingers or layers
of an electrical filter. By increasing or decreasing the number of fingers by one,
we expect only a small alteration in the total outcome, the transmission energy.
The more drastically the variation of the integer variable is, the more drastically
model function values are supposed to change. We call these variables physical ones
to distinguish them from the so-called categorial variables, which are introduced to
enumerate certain situations and where any change leads to a completely different
category and thus to a completely different response.

The procedure is motivated by the observation that in case of optimizing elec-
tronic filters, the objective function seems to possess a convex structure with respect
to the integer variables, if optimal values for the continuous variables are inserted.
A particular advantage is that an available optimization program for the continuous
formulation can be used in form of a black box.

Numerous difficulties are observed in practice, such as a nonlinear programming
problem with respect to the continuous variables becomes infeasible, the continuous
solution is only a local one, there is no suitable criterion for a local solution of the
mixed-integer problem, the direct search stops at a non-optimal point, there is no
progress along the boundaries of the box constraints, and many others. Moreover,
the whole process is extremely time-consuming and sometimes unstable. Never-
theless, the resulting computer code is able to find acceptable designs of electronic
filters.

Section 2 contains a brief outline of the underlying physical model equations,
i.e., the wave equation, the cascading of P-matrices, and the scattering matrix from
which the transmission is computed. The optimization problem is formulated in
Section 3, where we describe the design problem in more detail. In Section 4, the
most important features of sequential quadratic programming method are summa-
rized to understand the computational procedure. A general procedure for solving
constrained nonlinear mixed-integer programs is presented in Section 5, where the
above side conditions are the main motivation for the approach proposed. To il-
lustrate the computational performance of different variants, some computational
test results are summarized in Section 6. They are obtained for an academic test
problem. Finally numerical results of a real-life case study are shown in Section 7,
where we consider the optimal design of an existing electronic filter.



2 Physical Model Equations

The design of SAW filters is supported by computer simulation based on a physical
model. The input data of a simulation run are the parameters that define the
geometry of the acoustic tracks. The output of the simulation characterizes the
electrical properties of the filter computed for a series of pre-defined frequency points.
In Figure 1, we show the transmission of a filter for a typical design.
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Figure 1: Transmission coefficient T(f;) over frequency points f;

As a basis of the simulation, several physical models differing in complexity and
accuracy are available. Typically, the increase in accuracy has to be paid by a more
complex model and, consequently, by higher computing times. Thus, the required
accuracy is proportional to computing time.

In the following, we consider a SAW filter in more detail. When observing the
surface of a single-crystal, we see that any deviation of an ion from its equilibrium
position provokes a restoring force and an electrical field due to the piezo-electric
effect. Describing the deviations of ions at the surface in terms of a scalar potential,
we conclude that the SAW is described by a scalar wave equation

G = C2A<Z5 . (1)
We use the notation
A - two-dimensional Laplace operator,
¢ - velocity,
t - time.



The boundary conditions are given by the physical conditions at the surface. In this
case, the boundary conditions are non-trivial, since the surface is partly covered
by a metal layer. In addition, the piezo-electric crystal is non-isotropic, and the
velocity of the wave depends on its direction. For the numerical simulation, addi-
tional effects such as polarization charges in the metal layers have to be taken into
account. Consequently, the fundamental wave equation is not solvable in a closed
form. For this reason Tobolka [39] introduced the P-matrix model as an equivalent
mathematical description of the SAW.

To show the complexity of the P-matrix model, we describe an example in detail.
The basic element of the model is a simple base cell, which consists of two acoustic
ports, and an additional electric port. The acoustic ports describe the incoming
and outgoing acoustic signals, the electrical ports the electric voltage at this cell,
see Figure 2. The quantities ay,as,b; and by denote the intensities of the acoustic
waves. In terms of a description based on the wave equation, we have a; o< ¢, u is
the electrical voltage at the base cell, and 7 is the electrical current.
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Figure 2: Base cell of the P-matrix model with two acoustic and one electric port

The P-matrix model describes the interaction of the acoustic waves at the acous-
tic ports, with the electric port in a linear form,

by a; Py P P ay
by | =P | ax | =| Pu Pn Py ag . (2)
i u Py P3y Pss u

The interaction between the incoming and outgoing acoustic waves ay, and as, or by,
and by, with 7, and u at the electrical port, are given by the elements P;3, and Pss,
P31, and P33. The elements Py, Psy, and Py, Py are the dimensionless acoustic
reflection and transmission coefficients in the case of a short-circuited electrical port.

The submatrix
Py Py
3
<P21 P22> 3)
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is therefore the scattering matrix of the acoustic waves and describes the interaction
of the incoming and outgoing waves. The submatrices (P3; Psz), and (P Pa3)”
of P characterize the relation of the acoustic waves with the electric voltage, and
therefore the piezo-electric effect of the substrate. P33 is the admittance of the base
cell. The admittance is the quotient of current to voltage and the reciprocal value
of the impedance.

Proceeding from the P-matrix model, we calculate the scattering matrix S. This
matrix is the basic physical unit that describes the electro-acoustic properties of the
acoustic tracks, and finally the filter itself. The transmission coefficient T is one
element of the scattering matrix, i.e., T' = So;.

3 Optimal Design of Electronic SAW Filters

Mobile phone manufacturers provide strict specifications towards the design of a
bandpass filter. Typically, the transmission has to be above certain bounds in the
pass band and below certain bounds in the stop band depending on the actual
frequency. These specifications have to be achieved by designing the filter in a
proper way. Depending on the exact requirements upon the filter to be designed,
different optimization problems can be derived.

To give an example, consider the design goals of a SAW filter as shown in Fig-
ure 3. In this case, we want to maximize the transmission of the filter in the pass
band Ry. There is one lower transmission bound left from the bandpass interval
in the frequency interval R;, and another one in the frequency interval R,. The
corresponding bounds are denoted by Ty, 77, and T5.

To formulate the optimization problem, let us assume that € R" denotes the
vector of continuous real design variables and y € Z™ the vector of the integer
design variables as discussed above. Z. is the set of all integer values. By T'(f, z,y)
we denote the transmission subject to frequency f and the geometry parameters
x and y. Some disjoint intervals Ry, ..., Ry define the design space within the
frequency interval f; < f < f,. Our goal is to maximize the minimal distance of
transmission T'(f, x,y) over the interval Ry, under lower bounds 7i, ..., Ts for the
transmission in the remaining intervals Ry, ..., Rs. Moreover, it is required that the
transmission is always above a certain bound in Ry, i.e., that T'(f, z,y) > Ty for all
f € Ry. The optimization problem is formulated as

max min {T(f,z,y) : f € Ry}
reR yeZ: T(f,z,y) <T, for feR;,i=1,...,s , (4)
2<r<7T, y<y<y.
Here z,7 € R" and y,y € Z™ are lower and upper bounds for the design variables.

To transform the infinite dimensional optimization problem into a finite dimen-
sional one, we proceed from a given discretization of the frequency variable f by

7
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Figure 3: Design goals of a SAW filter

an equidistant grid in each interval. The corresponding index sets are called Jy,
Ji, ..., Js. Let [ be the total number of all grid points. First we introduce the
notation Tj(z,y) = T(f;,x,y), f; suitable grid point, j = 1, ..., [. All indices are
ordered sequentially so that {1,...,l} = JoU JyU...UJg, ie., Jo = {1,...,l},
J={l+1,....;4}, ..., Jg ={ls—1 +1,...,1}. Then the discretized optimization
problem is

max min {7;(z,y) : j € Jo}
reR"yeZ": Tjx,y) <T; forjeJ;,i=1...,s , (5)
2<r<7T, y<y<y.

The existence of a feasible design is easily checked by performing the test Tj(x,y) >
To for all j € Jy. Problem (5) is equivalent to a smooth nonlinear program after a
simple standard transformation.

4 Sequential Quadratic Programming Methods

We consider the continuous optimization problem with nonlinear inequality con-
straints

reR": ! (6)



where z is an n-dimensional parameter vector, and the vector-valued function g(z)
defines ¢ inequality constraints, g(z) = (g1(x),...,g.(z))T. The model functions
f(z), q1(x), ..., go(x) are continuously differentiable.

Sequential quadratic programming (SQP) methods are well known and are con-
sidered as the standard general purpose algorithms for solving smooth nonlinear
optimization problems. They have their roots in unconstrained optimization, and
can be considered as extensions of quasi-Newton methods. The basic idea is to
establish a quadratic approximation of the Lagrangian function based on second
order information, with the goal to achieve a fast local convergence speed. They
belong to the most powerful nonlinear programming algorithms we know today for
solving differentiable nonlinear programming problems of the form (6). The the-
oretical background is described for example in Stoer [38] in form of a review, or
in Spellucci [37] in form of an extensive text book, see also Gill et. al [10]. From
the more practical point of view, SQP methods are also introduced in the books of
Papalambros and Wilde [28] or Edgar and Himmelblau [7]. Their excellent numeri-
cal performances are shown in comparison with other methods in Schittkowski [32],
[33], and Hock and Schittkowski [16]. For many years, they belong to the most
frequently used algorithms to solve practical optimization problems.

SQP solves a quadratic programming subproblem in each iteration step, which is
obtained by linearizing the constraints and approximating the Lagrangian function

L(z,u) = f(z) + u' g(2) (7)

quadratically. To formulate the quadratic programming subproblem, we proceed
from the given iterate x; € R", an approximation of the solution, vy € R an
approximation of the multipliers, and B, € IR"*", an approximation of the Hessian
of the Lagrangian function in a certain sense. Then one has to solve the quadratic
programming subproblem

deR"
Vg(zp)Td+ g(zp) <0 .

(8)

Here Vg(z) denotes the Jacobian matrix of g(z) at @ = . Let dj be the optimal
solution and wy the corresponding multiplier. A new iterate is obtained by

(m)-()n(ss).
Vg41 UV, U — Vg

where ay, € (0, 1] is a suitable steplength parameter.

The steplength parameter «ay is required in (9) to enforce global convergence of
the SQP method, i.e., the convergence to a point satisfying the necessary Karush-
Kuhn-Tucker optimality conditions when starting from arbitrary initial values, e.g.,



a user-provided x¢o € R" and vg = 0, By = I. «ay should satisfy at least a sufficient
decrease of a merit function ¢, («) given by

or(a) = P (x + ad, v + a(u —v)) (10)

with a suitable penalty function v,(z,v), for example the augmented Lagrangian
function

dnlae) = 1)+ 3 (vigse) + grags) =3 ey (1)

jeJ jEK

with J = {j < c:g;(x) > —v;/r;} and K = {1,...,c} \ J, see Schittkowski [34].
The objective function is penalized as soon as an iterate leaves the feasible domain.
The corresponding penalty parameters r;, j = 1, ..., ¢, that control the degree
of constraint violation, must be chosen in a suitable way to guarantee a descent
direction of the merit function. Then we get the following result that is essential to
prove convergence,

¢, (0) = Vwrk(xk,vk)T< di ) <0 . (12)

U — Uk

For the proof see Han [14] or Schittkowski [34]. Additional modifications of (8) are
available to guarantee, that in case of a non-feasible domain a descent direction can
be obtained, see Schittkowski [34].

The update of matrix By can also be performed by standard quasi-Newton tech-
niques known from unconstrained optimization. In most cases, the BFGS method is
applied, see Powell [29], [30], or Stoer [38]. Starting from the identity or any other
positive definite matrix By, the difference vectors

@ = ViL(xpi1,ug) — VaL(xg, ug) |

(13)
P = Tk+1 — Tk

are used to update By in the form

By = (B, qr, pr) (14)
where
T T
qq¢  Bpp' B

I(B,q,p) = B+ — 15
( ) P (15)

The above formula yields a positive definite matrix By, 1 provided that By, is positive
definite and ¢} pr > 0. A simple modification of Powell [29] guarantees that By, is
positive definite even if the latter condition is violated.
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Among the most attractive features of sequential quadratic programming meth-
ods is the superlinear convergence rate in the neighborhood of a solution, see Pow-
ell [30]. Under a couple of additional assumptions, we get

k1 = 2" < yellex — 27 (16)

with 74 — 0. The motivation for the fast convergence rate of SQP methods is based
on the following observation: An SQP method is identical to Newton’s method to
solve the necessary optimality conditions, if By is the Hessian of the Lagrangian
function at x, and wug and if we start sufficiently close to a solution. The statement
is easily derived in case of equality constraints only, but holds also for inequality
restrictions by applying for example the Fischer-Burmeister function, see Fischer [8].

5 A Combined SQP and Direct Search Method
for Solving Mixed-Integer Nonlinear Programs

Our goal is to extend the methodology behind SQP methods to solve mixed-integer
nonlinear programming (MINLP) problems of the kind

min f(z,y)
reR"yeZ": g(r,y) <0, (17)
z<zr<T, y<y<y,

where upper and lower bounds of the variables are separately handled. The electrical
filter design problem (5) is of the same form after some modifications. A typical
integer range consists of 50 to 100 different values for a scalar integer variable, or,
in other words, 50 < 7’ — y* < 100, where 7’ and y' denote the i-th upper and
lower bound for the i-th integer variable, ¢ = 1, ..., m. As in this practical case,
we assume that there are no inequality constraints depending only on the integer
variables.

There are very many different possibilities to take integer variables into account.
Rigorous mathematical approaches are available in situations, when the integer vari-
ables can be relaxed. In this case, function values f(z,y) and g(z,y) can be obtained
also for any y € R™ and it is possible to solve the relaxed problem

reR"yeR": g(z,y) <0 , (18)

After truncating the relaxed variables, it is sometimes possible to get an approxi-
mate solution of the MINLP. Derivatives of f(x,y) and g(x,y) subject to y at integer
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values are available and allow the development of more advanced mathematical tech-
niques developed in the last years, for example the so-called outer approximation
method of Duran and Grossmann [6], see also Floudas [9]. Successive linear cuts
at previous iterates are constructed and added to a linear mixed-integer program
(MILP), that can be solved by any standard algorithm. These methods are particu-
larly used in the design of chemical reactors, see Kocis and Grossmann [20] or again
Floudas [9].

The approach differs from the successive linear programming technique which
is frequently applied in mechanical structural optimization, see for example Olsen
and Vanderplaats [27] or Loh and Papalambros [25], where all problem functions are
linearized subject to the continuous and integer variables at the current iterate. The
resulting MILP is again solved by any available standard code. Successful extensions
to mixed-integer SQP methods are also available, see Cha and Mayne [3, 4], where a
mixed-integer quadratic program (MIQP) must be solved in each step, again requir-
ing relaxable variables. In addition, there are numerous other methods for example
based on classical branch-and-bound strategy, see Dakin [5], Beale [2], or Gupta
and Ravindran [13]. Also any combinations are available, for example for SQP and
branch-and-bound, see Leyffer [23]. Reviews of these algorithms and more references
are found in Floudas [9], Grossmann and Kravanja [12], and Leyffer [22]. But in
most of these situations, convergence analysis and reliable, efficient implementations
require convex nonlinear programs.

In some other applications, it is tried to relax the integer variables and to add
constraints of the form

(v —d)y' —dy) ... (v —di,) =0

to the resulting nonlinear program, where ¢ = 1, ..., m and where di, ..., d, are
all discrete values the variable y; may accept, see for example Li and Chou [24]
or Wang et al. [42]. However, the highly non-convex artificial constraints, even if
relaxed, increase the probability that only a local solution is obtained, and require
global optimization techniques. Having the complex design optimization problem in
mind, we are forced to reduce the number of simulations as much as possible making
this strategy unacceptable.

If the integer variables cannot be relaxed, then in two situations. First, there
are so-called categorial variables, see for example Audet and Dennis [1], which de-
fine certain alternatives like different types of material. Typically, these variables
enumerate situations which must be handled separately in a simulation code, and
there is no way to distinguish between a close and a far value. Since model function
values may differ completely when moving from one integer value to the next neigh-
bor, it is not possible to approximate the variable in an adequate form. Under this
condition, search methods are applicable, for example pattern search, evolutionary
algorithms, multidirectional search, or stochastic search, see for example the books
of Kelley [18], Schwefel [36], or Miettinen et al. [26].
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In our case, we assume that the integer variables possess some physical meaning
and are continuous in some sense. A slight alteration of an integer value, say by one,
changes the model functions only slightly, at least much less than a more drastic
change. A typical practical situation is considered in the paper, the number of fingers
or layers of an electronic filter. By increasing or decreasing the number of fingers by
one, we expect only a small alteration in the total outcome, the transmission energy.
The more drastically the variation of the integer variable is, the more drastically
model function values are supposed to change. We call these variables physical ones
to distinguish them from the categorial variables mentioned above.

To summarize, we have the following situation:

1. The model functions are highly nonlinear and non-convex.
2. There are relatively large ranges for integer values.

3. The feasible domain can become empty.

4. There is no continuous relaxation.

5. The integer variables have a physical meaning.

Our proposal is based on the idea to be able to compute an optimal solution with
respect to the continuous variables under the assumption that all integer variables
are fixed. If z(y) denotes the solution of

min f(z,y)
reR": g(z,y) <0, (19)
r<x<7T

for a fixed set of integer variables y € Z™ with y < y < 7, we get the nonlinear
bound-constrained integer problem

m . i F(y)
y € X 'géygy, (20)
where
F(y) = f(z(y),y) - (21)

There are no additional inequality constraints, since we assume that the nonlinear
constraints in (17) do not depend on the integer variables only. When solving (19)
numerically, for example by an SQP method as outlined in the previous section, we
hope that a global solution of (19) is computed, in particular that (19) possesses a
feasible solution. Otherwise, some additional safeguards are performed to proceed
to another iterate in the integer space.
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The proposed algorithm consists of a successive quadratic approximation com-
bined with a direct search method. Starting from a given set of integer variables yy,
objective function values of F(y) are evaluated at neighboring grid points, where a
complete optimization cycle with respect to the continuous variables must be per-
formed. Then we formulate a continuous quadratic approximation in the integer
space by a second order difference formula with unit stepsizes along the axes, to get
a matrix By and a vector hy. In case of relaxable integer variables, we would in-
terpret By as an approximation of V2F (y;) and hy, as an approximation of VF(yy,)
at the k-th iterate y,. Then the solution d, € R™ of the continuous quadratic
programming (QP) problem

min $d”Byd + hid
de R™: (22)
Y=Y <A <Y —yk

is computed. The guess y, + dj is rounded to get the subsequent iterate yi. 1 =
yr + [di], and the procedure is restarted.

The algorithm is motivated by the observation that the objective function F(y)
seems to possess a convex structure with respect to the integer variables y in case
of the optimal design of electronic filters. A particular advantage of this approach
is that an available optimization program for the continuous formulation (19) can
be used in form of a black box. The continuous programs under consideration are
highly non-convex, badly scaled, and ill conditioned.

It is possible that the quadratic approximation does not yield a positive definite
matrix, or that the solution of the quadratic program is not different from the actual
iterate or too close. If a strict descent property is not observed, we have to expect
an infinite loop. In these cases, a direct search method is applied along the axes of
the integer variables with the goal to find a better solution value. For a historical,
see for example Lewis, Torczon, and Trosset [21]. Convergence results are found in
Torczon [40] or Hough, Kolda, and Torczon [17].

Algorithm 5.1 Let y; = (yi,...,y"™)T € Z™ be given where we want to start
the direct search (DS) algorithm, and dy = (1,...,1)" a first guess for the search
direction. Moreover, we define by e; € Z"™ the i-th unit vector, i = 1, ..., m,

and the maximum number of iterations is jmaz. Then we proceed as follows for
7=1,23,...;

1. Try to find an intermediate descent direction proceeding from

djq = (dgl‘—p . ,d}”_l)Tf
Fori=1,..., m do

Ifd: =1 ord; ;=0 then

If F(y; +e;) < F(y;) then s} =1 else s5, =0
Else

If F(y; — ;) < F(y;) then s = —1 else sj = 0.
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2. Mowve to a better intermediate point:

z =Y+ 85, 85 = (55,8

[ ERRREE

3. Now try the opposite direction for coordinates without success:
Fori=1,..., m do
If s = 0 then
Ifd;_y =1 ord;_y =0 then '
If F(zj — e;) < F(2;) then d; = —1 else dj = 0
Else
If F(zj +e;) < F(z) then d; =1 else d; =0
Else

4. Project d; onto the feasible domain:
Fori=1,..., m do
Ifz; + dj» <y' then d; =0,
If 25+ dj > 7' then d; = 0.

5. Check stopping condition:
If d; =0 or j = jmax then stop.

6. Perform search along direction dj:
Let o = 1.
While y < y;+ad; <7 and F(y; +ad;) < F(y; + (o —1)d;) do o = a+1.
Let a; be the final o obtained.

7. New iterate y;i1:
Let yj1 = y; + ayd;.

The basic idea of this algorithm is to find a new descent direction based on a given
one. Afterwards, a successive line search will be performed. First, the given search
direction is analyzed by varying integer coefficients coordinate by coordinate, i.e., by
investigating surrounding grid points. If the previous search direction is profitable,
this old direction is retained. The auxiliary variable s; is used for defining an
intermediate trial point z; based on the coordinates of the old search direction that
are still profitable at y,. At z;, the remaining coordinates are analyzed and reset,
if necessary. Successive moves along the search direction follow. The procedure is
stopped if there is no descent with respect to all neighboring integer points is found
or when the maximum number of search steps is reached.

To summarize, the MINLP algorithm consists of the following two steps:

Algorithm 5.2 Letyg € Z™ be suitable starting points for solving the MINLP (17).
Fork=1,2,3,, ... compute yg from yi_1 as follows:
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1. Compute F(yg_1) by solving (19), compute a matriz Bx_; and a vector hy by
finite differences to approzimate F(y) at yg—1, and solve the quadratic pro-
gramming problem (22) to get a new trial point Uy = yr_1 + [dg], where dj, is
the continuous solution of (22) and [dy] its truncated integer value.

2. If Bx_1 1s not positive definite, if there is no sufficient progress in objective
function values, or if the gy is too close to yp_1, then start the direct search
algorithm 5.1 at Ui to get yy.

3. Otherwise, check termination conditions and restart the procedure, if neces-
sary.

There remain a couple of additional algorithmic difficulties to be taken into
account. We mention only the most important ones, for more details see van de
Braak [41].

1. For the very first solution of the continuous problem (19), we need a starting
point provided by the user. Depending on the question how drastically model
functions change if an integer variable is in- or decreased, we have the possi-
bility either to apply the given starting point subsequently or to start always
from the last computed continuous solution. This decision is made by the user.

2. The full approximation of the curvature of F(y) at an iterate y, € Z™ is
very time-consuming for the same reason, at least in case of expensive real-life
simulations. Instead of full approximation, it is also possible to compute only
the diagonal elements of By by a two-sided difference formula.

3. For mixed-integer programming, there is no adequate criterion to check local
convergence. The stopping rule is chosen heuristically and there is no guaran-
tee for local or even global convergence in strict mathematical sense.

6 Implementation and Numerical Tests

The proposed mixed-integer nonlinear programming algorithm is implemented in
form of a Fortran subroutine, see van de Braak [41], and denoted by MINLPQL.
Relaxed nonlinear programs of the form (19) are solved by the SQP code NLPQL
of Schittkowski [35]. The corresponding quadratic programming subproblems of
NLPQL are passed to QL, an implementation of the primal-dual method of Goldfarb
and Idnani [11], see Powell [31]. The subroutine is also used for finding optimal
solutions of quadratic programming subproblems of the nonlinear integer program
(22). In case of a continuous SQP method, all matrices By of subproblem (8) are
guaranteed to be positive definite. When approximating the integer function F'(y)
quadratically, see (22), positive definite matrices cannot be ensured. However, if it
turns out that an initial Cholesky decomposition cannot be obtained, the diagonal
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of matrix By is increased until a successful decomposition is obtained. A solution
of (22) is rejected and the direct search cycle is started, if QL reports an error or if
the solution value is not smaller than the value at the actual iterate yy.

The first order derivative of the integer function F(y) at ;. is approximated by
two-sided central differences at neighboring grid points. Second order approxima-
tions needed for the matrix By in (22) are obtained by two different procedures:

Case 1:  Only the diagonal of By, is computed by a central 2nd order difference
formula, where function values also needed for the gradient approxi-
mation are used.

Case 2: The diagonal values of By, are calculated as before, all other coefficients
are computed by 2nd order differences.

All integer iterates y, and corresponding function values F'(y;) are stored in
internal arrays to avoid multiple solution of expensive nonlinear programs of the
form (19). Starting values for NLPQL are to be provided by the user. In subsequent
iterations NLPQL is restarted at an optimal solution from a previous run, where
the corresponding set of integer values is closest to the actual iterate y;.

The numerical tests of this section are performed on a Siemens Celsius 620 with
a dual Pentium IIT processor (700 MHz) running under Windows 2000. The Fortran
codes are compiled by Compaq Visual Fortran, Version 6.5.

The subsequent examples are chosen to perform a few benchmark tests and to
highlight some numerical features of MINLPQL. A strictly convex quadratic function
in the integer variables is combined with highly nonlinear mixed terms in the integer
and continuous variables,

min 100(y1(2y1 + y2) + v2(y1 + 2y2) + 43)
+ a(lyr] + y2] + |ys| + 12|y192] + 12|y2ys| + 12]y1y3|)

R + exp (0.01(2z1 — 11)2) + (1.2525 — y5)* + 10022 + 10022
S )
yen T —2r3—Yy1+ys <0, (23)
Ty —Ta—Y2+ys <0,
—100 <x; <100 fori=1,...,4,

—100 <y; <100 fori=1,...,3.

The exact solution is x* = 0 and y* = 0, and we have a relatively wide range of
integer values. For a > 0, the objective function is non-smooth at the optimal so-
lution sunject to the integer variables, a severe handicap for the proposed method.
Although possible in this case, we emphasize again that we do not assume that
derivatives of the model functions with respect to the integer variables can be ob-
tained by relaxation. Only crude approximations based on neighboring grid points
are allowed.
Termination accuracy of NLPQL is set to 107, and starting values are

Yo = (—10,-20,-20)" , 20 = (—10,-20,35,50)" .
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By, nyLpQr ilop ittps  ny Ng
diagonal 37 4 2 6,944 6,519
full 33 3 0 3804 3751

Table 1: Overall performance for a = 0

kv v U Th xp o Ty F(y)
0 -10 -20 -20 -10.000 -23.031 0.000 16.969 214,762.04
1 10 3 3 7.000 2407 0.000 0.000 28701.09
2 -2 5 0 -2000 -3.279 0.000 1.721  8,379.41
3 2 0 0 2000 -0.006 0.000 0.000 801.00
4 1 0 0 1.000 -0.003 0.000 0.000 201.00
5 0 0 0 0000 0000 0000 0.000 1.00

Table 2: Iteration cycles for diagonal approximation By and a =0

We count the number of calls of NLPQL, nyrpgr, the number of QP and DS
iterations of MINLPQL, itgp and itpg, and the total number of all function and
gradient evaluations, ny and n,. Results are reported for diagonal approximation of
the curvature of F'(yy), and for full approximation by 2nd order difference formulae.

First we consider the smooth case a = 0. When approximating only the diago-
nal elements of By, the QP algorithms terminates after 4 steps because of internal
round-off errors, and a direct search cycle is started, see Table 1. Thus, this variant
requires more calls of NLPQL and more function and gradient evaluations. The full
approximation needs only two steps until convergence of the outer mixed-integer
algorithm. In both cases, the overall number of function and gradient calls is rela-
tively high. Reasons are a bad starting point and the necessity to choose relatively
small termination accuracy for NLPQL. Otherwise, the code would produce correct
integer values, but incorrect continuous values because the influence of the exponen-
tial term. When taking a closer look at the iterates of Table 2 and 3, we see that the
quadratic approximation approaches the solution quite rapidly. Slower convergence
is observed for the diagonal approximation. The continuous variable x5 is not ap-
proximated exactly because of internal scaling of objective function values subject
to the first starting point.

kv v up Th xp Ty F(y)
0 -10 -20 -20 -10.000 -23.031 0.000 16.969 214,762.04
1 1 -2 -1 1000 -2.677 0.000 0.323 741.73
2 0 0 0 0000 -0.006 0.000 0.000 1.00

Table 3: Iteration cycles for full approximation By and a = 0

18



By, nyLpQr itop ttps Ny Ng
diagonal 71 3 8 31,308 28,899
full 33 30 3753 3,700

Table 4: Overall performance for a = 10

Yh  Yi Y T ar ) F(yr)
10 20 20 -10.000 -23.031 0.000 16.969 311,262.04
22 10 20 2104 15994 0.104 0.000 304,573.46
14 24 -18 -14.000 -21.846 0.000 20.154 425,084.05
21 10 20 1104 16.003 0.104 0.000 290,363.46
17 6 16 1.021 12794 0.021 0.000 167,802.89
1.005 9594 0.005 0.000 79,194.21
9 2 8 1.002 6.003 0.002 0003 32,711.95

S © 0O Uk W~ O
—_
w
N}
—
[\

5 2 4 1.000 3.193 0.000  0.000  14,071.17
1 -2 0 1.000 -1.742 0.000  0.258 900.13
-1 0 0 -1.000 -0.006 0.000 0.000 211.00
1 0 0 0 0.000 0.000 0.000  0.000 1.00

Table 5: Iteration cycles for diagonal approximation B and a = 10

For the next example, we choose a = 10. The solution is not changed, but
the structure of the optimization problem is. Since the objective function F'(y) is
non-smooth at the optimal solution, we have to expect numerical difficulties close
to zero, and an earlier switch to the direct search algorithm. Despite of the non-
smoothness, MINLPQL performs only three QP steps in case of full approximation of
the curvature of F'(yy), see Table 4. On the other hand, the diagonal approximation
leads to quadratic approximation with a higher function values after three steps,
which requires a switch to the DS algorithm and a much higher number of function
and gradient calls, c¢f. Tables 5 and 6.

The subsequent results are obtained again for example (23), but now with a =
100, i.e., the degree of non-smoothness is much higher. In both cases, a few QP
iterates are made followed by about the same number of direct search steps, see
Table 7. The reason is in both situations, that the quadratic approximation is

Ve Vi Ui T Ti T, F(yr)
10 20 -20 -10.000 -23.031 0.000 16.969 311,262.04
2 -3 0 2000 -2359 0.000 0.641  2,287.69

0 0 0 0.000 -0.006 0.000 0.000 1.00

N — O

Table 6: Iteration cycles for full approximation By and a = 10
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By, nyLpQr itop ttps Ny ng
diagonal 53 1 7 8,303 8,124
full 77 4 6 18,702 18,616

Table 7: Overall performance for a = 100

ko u v w Ty Th r} Th F(y)
0 -10 20 -20 -10.000 -23.031  0.000 16.969  1,179,762.04
1 100 66 100 100.000 -22.212 100.000 16.831 300,551,627.69
2 -9 -20 -20 -10.000 -23.031  0.000 16.969  1,123,862.05
3 -5 -16 -16 -10.000 -19.200  0.000 12.800 621,181.28
4 -1 -12 -12 -10.000 -15.240  0.000  8.760 260,046.34
5 3 -8 -8 -10.000 -11.060  0.000  4.940 156,097.06
6 -1 -4 -4 -10.000 -6.400  0.000 1.600 36,014.24
7 3 0 0 -10.000 -0.008  0.000 0.000 2.105.41
S 0 0 0 -10.000 -0.008  0.000 0.000 2.71

Table 8: Iteration cycles for diagonal approximation By and a = 100

incorrect after a few steps leading to an increase of objective function values, see
Table 8 and 9. The total number of NLPQL calls is now much larger for the full
approximation, obviously caused by the non-differentiability of F'(y). Because of
the high nonlinearity of the optimization problem, the diagonal approximation of
By leads to a situation where the first variable x; is kept at the starting value,
x; = —10 for all k > 1. Thus, the nonlinear programs are solved with a termination
tolerance of 10716 in this case to achieve convergence to the optimal solution.

7 Case study: Optimal Design of an Electronic
Filter

The electronic filter to be optimized in this case study, is designed for rf-application
in cellular phones. The design has to satisfy the specification given for four frequency
intervals Ry, R;, Rs, and Rj3 as shown in Figure 4. The optimization goal is to
maximize the transmission 7T'(f;,x,y) over the interval of Ry by satisfying lower
bounds in R; and R,. The lower bounds of area R3 are considered being weak ones,
i.e., may be violated, but the violation should be as low as possible. Thus, a penalty
term is added to the objective function, to penalize bound violations in R3. The
results are obtained on a Siemens Celsius 620 with a dual Intel Pentium III processor
(700 MHz) running under Linux, Kernel 2.2.10.

Lower and upper bounds for 10 continuous and 3 integer variables are shown in
Table 10 together with initial values and final ones obtained by the code MINLPQL.
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Yk yi Yk 9311; xi f% :vi F(yx)
-10 -20 -20 -10.000 -23.031 0.000 16.969 1,179,762.04

9 -12 -16 9.001 -18.579 0.000 9.421 597,099.54
-2 -2 -14 -2.000 -14.400 0.000 1.600 96,313.00

k
0
1
2
3 6 5 -19 6.000 -15.192 0.000  0.000  344,101.00
4 -1 -1 -14 -1.000 -13.966 0.000 1.034 96,850.82
5 0 0 -13 0.000 -12.529 0.000 0.471 18,273.34
6 0 0 -9 0.000 -8.800 0.000 0.200 9,021.00
7 0 0 -5 0.000 -4.957 0.000 0.043 3,003.23
8 0 0 -1 0.000  -1.000 0.000  0.000 201.00
9 0 0 0 0.000 0.000 0.000  0.000 1.00

Table 9: Iteration cycles for full approximation Bj and a = 100

Simulation is performed with respect to 154 frequency points leading to 174 con-
straints in the continuous model. The initial and final transmissions are shown in
Figure 4, also for the continuous case with integer variables fixed at the starting
values. We observe that the constraint Rz remains violated. The example shows
that the design goal is only achieved by taking also integer variables into account.

In the QP algorithm, only the diagonal elements of By are computed. If two
integer iterates possess an Euclidian distance less than 5, MINLPQL switches from
the quadratic programming to the direct search algorithm. The number of steps
of the direct search algorithm is limited to five. Altogether 36 calls of NLPQL
are made within 4 QP cycles and one additional DS iteration. The total number
of simulations, i.e., the number of evaluations of the transmission energy 7}(x,y)
for all j, is 434 without the function calls needed for the gradient approximations.
Table 11 shows the main iterates of the MINLP algorithm.

8 Conclusions

A new algorithm is proposed for constrained mixed-integer nonlinear programming
(MINLP), that does not assume availability of a continuous relaxation. In other
words, it is supposed that the simulation code is unable to compute function values
between given grid points. Especially, we assume that gradient information sub-
ject to the integer variables is not available, and that the optimization problem is
highly nonlinear and non-convex in the continuous variables. The MINLP problem
is transformed into a pure integer problem, where a nonlinear function depending
only on integer values is to be minimized subject to lower and upper bounds. One
evaluation of this function requires the complete optimization of the corresponding
continuous formulation, where integer variables are fixed.

The algorithm proceeds from successive quadratic approximations based on 2-
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variable lower bound initial value optimal value upper bound

" 7 19 12 19
n 12 24 14 25.0
n 100 130 124 150

7 5.0 11.58 9.589 15.0
s 50.0 50.0 92.39 150.0
2 10.5 11.39 11.25 11.5
T4 10.0 10.61 10.62 11.0
s 0.3 0.3 0.3 0.5

6 0.95 1.033 1.031 1.05
Ty 0.95 1.031 1.023 1.05
T 0.95 1.012 1.015 1.02
T 0.985 1.001 0.998 1.03
10 1.0 1.0 1.000 1.03

Table 10: Bounds, initial, and optimal values for design variables

sided second-order difference formulae for getting derivatives from neighboring grid
points. If the QP solution is not acceptable, a direct search is started. The feasibility
of the method is outlined by a benchmark example. The results show that a good
approximation of the integer solution can be obtained in very few QP steps provided
that the model function is sufficiently smooth. In some cases, the switch to the direct
search part can be prevented by full approximation of the curvature of the integer
function. Despite of the large amount of additional function evaluations, the overall
performance is better than in case of diagonal approximation. If, on the other hand,
the objective function is sufficiently non-smooth in the integer values at the optimal
solution, then the approximation of the diagonal leads to better results.

However, the total number of all function and gradient evaluations subject to
the continuous variables could become extremely large, in particular if the quadratic
approximation of the objective function is misleading. In case of the academic test
problem under consideration, the starting point is far away from the optimal solution
and causes a larger number of iterations.

In real-life environments, we can expect much better performance, if good initial
guesses are available. Thus, we present some results for the optimal design optimiza-
tion of electronic filters based on the piezo-acoustic effect. The model is outlined
and the influence of integer variables is shown. The basic idea is to maximize the
transmission in a given frequency range subject to lower bounds for the transmis-
sion in some other ranges. A practical design problem shows that the proposed
algorithm can be applied also in cases, where function evaluations are extremely
expensive because of the highly complex numerical simulation.
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9

k 0 1 2 3 4 5
i 19 17 12 12 12 12
i 24 19 13 14 14 14
3 130 116 116 122 123 124
! 11.723 10.301  9.191  9.548 9.591  9.589
2 50.000 64.100 91.921 93.907 92.940 92.391
r} 11.389 11.350 11.255 11.257 11.257 11.256
;
5
k

x 10.616 10.618 10.621 10.617 10.617 10.617
x 0.300  0.300  0.300  0.300 0.300  0.300
x? 1.033 1.033 1.030 1.031 1.031 1.031
xl 1.033 1.029 1.021 1.023 1.023 1.023
sy 1.013 1.012 1.015 1.015 1.015 1.015
) 1.001  0.995 0998 0.998 0.998  0.998
230 1.000  1.000  1.000  1.000  1.000  1.000

flzk,ye) 137.479 40.757 1.312  0.052  0.035  0.000

Table 11: Iteration cycles for the case study
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Figure 4: Initial and optimal filter designs
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