PCOMP: A FORTRAN Code for
Automatic Differentiation

M. Dobmann, M. Liepelt, K. Schittkowski !

Abstract: Automatic differentiation is an interesting and important tool for all
numerical algorithms that require derivatives, e.g. in nonlinear programming,
optimal control, parameter estimation, differential equations. The basic idea is
to avoid not only numerical approximations, which are expensive with respect to
CPU time and contain round-off errors, but also hand-coded differentiation. The
paper introduces the forward and backward accumulation methods and describes
the numerical implementation of a computer code with the name PCOMP. The
main intention of the approach used is to provide a flexible and portable FOR-
TRAN code for practical applications. The underlying language is described in
the form of a formal grammar and is a subset of FORTRAN with a few exten-
sions. Besides a parser that generates an intermediate code and that can be
executed independently from the evaluation routines, there are other subrou-
tines for the direct computation of function and gradient values, which can be
called directly from a user program. On the other hand it is possible to generate
FORTRAN code for function and gradient evaluation that can be compiled and
linked separately. 2

!'Mathematisches Institut, Universitéit Bayreuth, D - 95440 Bayreuth
2This work was supported by MBB, Unternehmensbereich Flugzeuge, Munich.

1. Introduction

Let f(z) be a nonlinear differentiable function with real values defined for all z € R".
By automatic differentiation we understand the numerical computation of a derivative
value V f(x) of f at a given point x without truncation errors and without hand-coded
formulas.

Hand-coded differentiation is time-consuming and always full of human errors, at
least when more complicated functions are involved. To avoid these difficulties, software
systems are available to generate derivative formulas symbolically. MACSYMA is
probably the best known system, distributed by Symbolics Inc. However the software
is quite extensive and the execution is time-consuming. Griewank (1989) reports that
the evaluation of the Helmholtz energy function with n = 30 by another algebraic
manipulation system MAPLE, Char et al. (1988), failed after 15 minutes CPU time
on a SUN 3/140 with 16 MB memory due to lack of memory space.

Numerical differentiation requires at least n additional function evaluations for one
gradient calculation and induces truncation errors. Although very easy to implement,
the numerical errors are often not tolerable, e.g. when the derivatives are used within
another numerical approximation scheme. A typical example is the differentiation of
solutions of differential equations in an optimal control problem with respect to control
variables.

Automatic differentiation overcomes the drawbacks mentioned and is a very useful
tool in all practical applications that require derivatives. The resulting code can be used
for the evaluation of nonlinear function values by interpreting symbolic function input
without extra compilation and linking. Whenever needed, gradients can be evaluated
exactly at run time.

Symbolic function input and automatic differentiation is used particularly within
interactive nonlinear optimization systems like NLPSOLVER (Idnani (1987)), PAD-
MOS (Kredler e.al. (1990)), SYSTRA (Kelevedzhiev and Kirov (1989)), or EMP
(Schittkowski (1987a)). Another typical application is the possibility of including the
techniques in mechanical optimal design systems based on FE-techniques like MBB-
LAGRANGE, cf. Kneppe (1990). In these cases, the whole system is far too complex
to link additional codes to the system whenever user-provided nonlinear functions are
to be processed. Whereas the main system functions are built in (e.g. bounds on
stresses, displacements, frequencies), it is often desirable to have the additional option
of defining arbitrary problem-dependent constraints or objective functions.

There exists meanwhile a large variety of different computer codes for automatic
differentiation, cf. Juedes (1991) for a review. They differ in the underlying design
strategy, domain of application, mathematical method, implementation and numerical
performance. The code PCOMP to be introduced in this paper, is another member
of this increasing family of computer implementations. Whereas some general-purpose

systems were developed to differentiate more or less arbitrary code given in higher
programming languages, e.g. GRADIENT (Kedem (1980)), JAKEF (Hillstrom (1985))
or ADOL-C (Griewank, Juedes, Srinivasan (1991)), PCOMP is a tool with a somewhat
restricted language related to FORTRAN, but with emphasis on code flexibility and
speed.

PCOMP proceeds from a subset of FORTRAN to define constants and expressions,
and possesses additional constructs to define arrays, sum and product expressions and
function sets over arbitrary index sets. This allows, for example, the declaration of con-
straints in certain nodes in a finite element system. Since arbitrary external functions
can be linked to PCOMP, it is even possible to use symbolic expressions for externals,
e.g. terms like sigma(i) for describing the stress in a node i. Additional conditional
statements if, else and endif may control the execution.

The program PCOMP consists of three FORTRAN modules that can be imple-
mented independently from each other. One module scans and parses the input of
data and functions, respectively, and generates an intermediate code. This code can be
used either to compute function and gradient values directly in the form of subroutines,
or to generate FORTRAN codes for function and gradient evaluation. Thus PCOMP
can be used in a very flexible way covering a large variety of possible applications,
particularly since all modules are written in standard FORTRAN 77.

Basically there are two ways to implement automatic differentiation, called forward
and backward accumulation respectively. Both are used in PCOMP and outlined in this
paper briefly. A particular advantage of gradient calculations in reverse accumulation
mode is the limitation of relative numerical effort by a constant that is independent of
the dimension, i.e. the number of variables.

A more general treatment of automatic differentiation is found in the books of Rall
(1981) and Kagiwada et al. (1986). A review of further literature and a more extensive
discussion of symbolic and automatic differentiation is given in Griewank (1989). An
up-to-date summary of related papers is published in Griewank and Corliss (1991).

In Section 2 of this paper, we describe the basic mathematical ideas, including
function evaluation and the forward and reverse accumulation methods for gradient
calculation. The subsequent section contains a description of the input format for
data and functions that is required to execute PCOMP. All allowed operations of
the proposed language are defined. Examples and numerical results of test runs are
presented in Section 4. Program organization and use of the FORTRAN subroutines is
outlined in Section 5, which is particularly important for those who want to implement
PCOMP within their own software environment. Section 6 then shows how user-
provided external functions can be linked to PCOMP and called from the underlying
program. Some appendices contain a listing of the formal grammar, a list of all error
messages, and a FORTRAN code for an example of Section 4 generated by PCOMP.

2. Function and Gradient Evaluation

First we have to investigate the question of how a nonlinear function is evaluated. The
idea is to break a given expression into elementary operations that can be evaluated
either by internal compiler operations directly or by external function calls. For a given
function f the existence of a sequence f; of elementary functions is assumed, where
each individual function {f;} is real-valued and defined on R 1 < n; < m — 1 for
t=n+1,....,m. We define now the situation more formally by a pseudo-program:

Definition: Let f be a real-valued function defined on the R™. Then some real valued
functions f; defined on R™, ¢ =n 4+ 1,...,m, are called a sequence of elementary
functions for f, m > n, if there exists an index set J; with J; C {1,...,i — 1},
|.J;| = n; for each function f;, i = n+ 1,...,m, such that any function value of f
for a given vector z = (x1,...,7,)T can be evaluated according to the following
program:

For 1=n+1,...,m let
v = fi(zr, k € J;)
Let f(z) =z

The proposed way of evaluating function values is implemented in any compiler or
interpreter of a higher programming language, if we omit possible code optimization
considerations. In computer science terminology, we would say that a postfix expression
is built in the form of a stack, which is then evaluated recursively. Thus the elementary
functions can be obtained very easily and the corresponding technique is found in any
introductory computer science textbook.

Note that for every function f(x) there exists at least one trivial sequence of ele-
mentary functions, e.g. by letting m :=n + 1 and f,41(z) := f(z). For practical use,
however, we assume that the functions f; are basic machine operations, intrinsic or
external functions, where the relative evaluation effort is limited by a constant inde-
pendently of n. Under this condition, suitable bounds for the work ratio can be proved.
The algorithm can be implemented efficiently by using stack operations, which reduce
the storage as far as possible, i.e. we do not need to store all intermediate variables
Tpt1y ooy Lm-

Of course we assume now that the given function f(x) is differentiable with respect
to any = € R™ and that a sequence of smooth elementary functions {f;} is given. In
this paper, we are only interested in automatic evaluation of gradients and neglect the
possible extension of the algorithms to higher order derivatives.

4

By investigation of the above program for evaluating a function value f(z), we
realize immediately that in a very straightforward way the gradient V f(x) can be
evaluated simultaneously. If we know how the derivatives of the elementary functions
can be obtained, the only thing we have to change is the inclusion of another program
line for the gradient update by exploiting the chain rule. In a natural way we denote
the resulting approach as forward accumulation.

Forward Accumulation Algorithm: Let f be a differentiable function and {f;} be
a sequence of elementary functions for evaluating f with corresponding index sets
Ji;i =n+1,...,m. Then the gradient V f(z) for a given z € R" is determined
by the following program:

For 1=1,...,n let

Va, =¢;
For 1=n+1,...,m let

z; = fi(zr, k € Jp),
Ofi(xk, k € J;)

jGZJi 8xj J
Let f(z) = am,
Vf(xz) =V,

Here e; denotes the i-th axis vector in R", i = 1,...,n. Again the evaluation of
gradients can be performed by suitable stack operations, reducing the required storage.

The complexity of the forward accumulation algorithm is bounded by a constant
times n, the number of variables. In other words, the numerical work is the same order
of magnitude as for numerical differentiation.

To improve the efficiency of the gradient evaluation, another method can be con-
sidered, which is based on the following analytic evaluation. First let

Yi = axm/axz yt=1,....m

where {z;} is a sequence of original variables xy, ... ,x,, and of auxiliary variables x, 1,
. ,&m, determined by the elementary function set {f;} and the evaluation procedure
of f(z) with respect to a given x. Then we have y,, = 1 and

of(x)/0x; =y, ,i=1,..,n.
By defining inverse index sets
K;={i:jeJ,1<i<m}

5

it can be shown by elementary analysis that

y; = Z 8fz(xk,k c Jl)

7
’iEKj ax]

for j =n+1,...,m; see e.g. Kim et al. (1984). Now we are able to compute y; as soon
as we know all y;,7 = j + 1,...,m. Also we have to know all intermediate variables
ri, i = n + 1,...,m, before starting the loop in reverse form. Therefore we call the
resulting method the reverse accumulation algorithm, which can be summarized as
follows:

Reverse Accumulation Algorithm: Let f be a differentiable function and {f;} be
a sequence of elementary functions for evaluating f with corresponding index sets
Jiyi =n+1,..m. Then the gradient V f(z) for a given € R" is determined by
the following program:

For 1=n+1,...,m let
v = filan, k € Jy),

Yi =

Let f(x) = xp,
Y; :0, 1= 1,...,7’L,
Ym =1

For :=m,m—1,...,n+1 let

v =y; + ACLAS)yZ for all j € J;
8!Ej

Let f(x) = Tm,
Vf(x) = (ylv Tt yﬂ)T

The interesting result is the observation that the relative computational work, i.e.
the quotient of the computational effort to evaluate f(z) plus V f(z) and the compu-
tational effort to evaluate f(z) alone, is bounded by the maximum work ratio of all
elementary functions f;(x) included in the evaluation list of f(z); see e.g. Griewank
(1989) for detailed assumptions needed to prove this statement. If we assume that
every elementary function f; and the corresponding gradient V f; can be evaluated
indepently of n, we get the following result:

The evaluation of a gradient by reverse accumulation never requires more
than five times the effort of evaluating the underlying function by itself
(Griewank (1989)).

The drawback of reverse accumulation, however, is the necessity to store all in-
termediate data x;, ¢« = n + 1,...,m, which could become unacceptable depending
on the storage organization of an actual implementation. Thus PCOMP uses both
algorithms. For interpreting the functions and evaluating gradients at run time, the
forward accumulation mode is preferred to avoid difficulties with limited memory. Also
for the practical applications in mind, calculation time is less important. On the other
hand, the alternate possibility to generate FORTRAN codes for function and gradient
evaluation uses reverse accumulation.

3. Input Format

The symbolic input of nonlinear functions is only possible if certain syntax rules are
satisfied. Here, the allowed language is a subset of FORTRAN with a few extensions. In
particular the declaration and executable statements must satisfy the usual FORTRAN
input format, i.e. must start at column 7 or later. A statement line is read in until
column 72. Comments beginning with C at the first column, may be included in a
program text wherever needed. Statements may be continued on subsequent lines by
including a continuation mark in the 6th column. Either capital or small letters are
allowed.

In contrast to FORTRAN, however, most variables are declared implicitly by their
assignment statements. Variables and functions must be declared separately only if
they are used for automatic differentiation. PCOMP possesses eight special constructs
to identify program blocks.

* PARAMETER
Declaration of constant integer parameters to be used throughout the program,
particularly for dimensioning index sets.

* SET OF INDICES
Definition of index sets that can be used to declare data, variables and functions
or to define sum or prod statements.

* REAL CONSTANT
Definition of real data, either without index or with one- or two-dimensional
index. An index may be a variable or a constant number in an index set. Also
arithmetic expressions may be included.

* INTEGER CONSTANT
Definition of integer data, either without index or with one- or two-dimensional
index. An index may be a variable or a constant number in an index set. Also
arithmetic integer expressions may be included.

* TABLE <identifier>
Assignment of constant real numbers to one- or two-dimensional array elements.
In subsequent lines, one has to specify one or two indices followed by one real
value per line in a free format.

* VARIABLE
Declaration of variables either with or without index, with respect to which au-
tomatic differentiation is to be performed.

* FUNCTION <identifier>
Declaration of functions either with or without index, for which function and
gradient values are to be evaluated. The subsequent statements must assign a
numerical value to the function identifier.

* END
End of the program.

The order of the above program blocks is obligatory, but they may be repeated
whenever desirable. Data must be defined before their usage in a subsequent block.
All lines after the final END statement are ignored by PCOMP. The statements within
the program blocks are very similar to usual FORTRAN notation and must satisfy the
following guidelines:

Constant data: For defining real numbers either in analytical expressions or within
the special constant data definition block, the usual FORTRAN convention can
be used. In particular the F-, E- or D-format is allowed.

Identifier names: Names of identifiers, e.g. variables and functions, index sets and
constant data have to follow the FORTRAN syntax rules. The identifier names
must begin with a letter and the number of characters must not exceed 6.

Index sets: Index sets are required for the sum and prod expressions and for defining
indexed data, variables and functions. They can be defined in different ways:

1. Range of indices, e.g.
indl = 1..27

2. Set of indices, e.g.
ind2 = 3,1,17,27,20

3. Computed index sets, e.g.
ind3 = b%i + 100 , i=1..n

4. Parameterized index sets, e.g.
ind4 = n..m

Assignment statements: As in FORTRAN, assignment statements are used to as-
sign a numerical value to an identifier, which may be either the name of the
nonlinear function that is to be defined, or of an auxiliary variable that is used
in subsequent expressions, e.g.

rl = x1*x4 + x2*x4 + x3*%x2 - 11
r2 = x1 + 10*%x2 - x3 + x4 + x2*xx4*(x3 - x1)
f = r1*x2 + r2**2

Analytical expressions: An analytical expression is, as in FORTRAN, any allowed
combination of constant data, identifiers, elementary or intrinsic arithmetic op-
erations and the special sum and prod statements. Elementary operations are

+ ., -, %, / , k%
and the allowed intrinsic functions are

abs, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh,

asinh, acosh, atanh, exp, log, loglO, sqrt
Alternatively, the corresponding double precision FORTRAN names possessing
an initial d can be used as well. Brackets are allowed to combine groups of oper-
ations. Possible expressions are e.g.

5*xdexp(-z(i))
or

log(1l + sqrt(cl*fl)*x2)

sum and prod expressions: Sums and products over predetermined index sets are
formulated by sum and prod expressions, where the corresponding index and the
index set must be specified, e.g. in the form
f = 100*prod(x(i)**a(i), i in inda)
In the above example, x(i) might be a variable vector defined by an index set,
and a(i) an array of constant data.

Control statements: To control the execution of a program, the conditional state-
ments
if <condition> then
<statements>
endif
or
if <condition> then
<statements>
else
<statements>
endif
can be inserted into a program. Conditions are defined as in FORTRAN by
the comparative operators eq, ne, le, 1t, ge, gt, which can be combined using
brackets and the logical operators and, or and not, e.g.
yl = (x3 - x2)*(x3 - x2)*(x6 - x2)
if ((yl.lt.eps) .and. (yl.gt.-eps)) then
yl = eps
endif

Whenever indices are used within arithmetic expressions, it is possible to insert

10

polynomial expressions of indices from a given set. However functions must be treated
in a particular way. Since the design goal is to generate short, efficient FORTRAN
codes, indexed function names can be used only in exactly the same way as defined.
In other words, if a set of functions is declared e.g. by
* FUNCTION f(i), i in index

then only accesses to £(i) are allowed, not to £(1) or £(j), for example. In other
words, PCOMP does not extend the sum and prod statements to a sequence of single
expressions.

Because of the internal structure of the reverse algorithm, it is not allowed to have
any variable names on the left and right hand side of an arithmetic expression at the
same time, if the expression depends on any variables. Thus a statement like

s = s + 2%x1
is forbidden in the reverse mode, i.e. when generating FORTRAN code. To overcome
the problem, one could use two statements of the form

y = s

s =y + 2xx1
However we have to take care of this difficulty only in case of the reverse mode when
generating FORTRAN code. If we interprete the symbolic input by forward accum-
mulation, we use the first expression as it stands.

On the other hand it is allowed to pass variable values from one function block
to the other. However the user must be aware of a possible failure, if in the calling
program the evaluation of a gradient value in the first block is skipped.

One should be very careful when using the conditional statement if. Possible traps
that prevent a correct differentiation are reported in Fischer (1991), and are to be il-
lustrated by an example. Consider the function f(x) = 2 for n = 1. A syntactically
correct formulation would be:

if (x.eq.1) then

f =1
else

f = x*x2
endif

In this case PCOMP would try to differentiate both branches of the conditional state-
ment. If x is equal to 1, the derivative value of f is 0; otherwise it is 2. Obviously we
get a wrong answer for x = 1. This is a basic drawback for all automatic differentiation
algorithms of the type we are considering.

More examples in the form of complete PCOMP programs are listed in Section 4.
The complete formal grammar of the language is found in Appendix A, which should
be examined whenever the syntax is not clear from the examples presented. Syntax
errors are reported by the parser and are identified by an error number. A list of all
possible error messages is presented in Appendix B.

11

4. Examples and Numerical Experiments

The following examples illustrate typical applications of the PCOMP language. Most
of them describe mathematical optimization problems. Since we want to get some
information on the performance of the algorithms and techniques used, we also include
some test data in the form of absolute and relative calculation times. The following
abbreviations are used in the subsequent tables:

SYM - symbolic function interpretation, evaluation of gradients by
forward accumulation

GEN - generated FORTRAN code for function and gradient evaluation
by reverse accumulation

TF - calculation time for function evaluation

TG - calculation time for gradient evaluation

TNG - calculation time for numerical gradient approximation by forward
differences including one function evaluation

WR - work ratio for automatic differentiation

WRN - work ratio for numerical differentiation

All tests were performed on a PC 486-DX (33 Mhz) running under MS-DOS; to
get more precise measures of calculation time without multi-user or multi-tasking in-
fluences. All programs were compiled by the LAHEY V5.01 compiler. The presented
calculation times are mean values of successive runs and are measured in hundredths of
a second. The number of identical test runs needed to get measurable execution times
is adapted to the problem size. A work ratio is the quotient of function plus gradient
evaluation and function evaluation; more precisely

WR = TG/TF
WRN = TNG/TF
Note here that the automatic evaluation of a gradient implies also a calculation of

the corresponding function value, and that the numerical approximation of a gradient
requires n + 1 function calls.

Example 1:
e Problem TP32 of Hock and Schittkowski (1981):
f(x) = (21 + 329+ 23)* +4(2; — 29)*
g1(r) = 6wy + 4wz — 25 —3
g2(x) = 1—21— 29— 23

The optimization problem consists of minimizing f(z) subject to the constraints
g1(z) > 0 and go(z) > 0, and we may imagine that an algorithm is to be applied
that requires gradients of all problem functions.

12

e Variables:

e PCOMP program:

c TP32

* VARIABLE
x1, x2, x3

* FUNCTION g1

(Il, T, .Tg) = (01, 077 02)

gl =1.0 -x1 - x2 - x3

* FUNCTION g2
g2 = 6.0%x2 + 4.0*%x3 - x1*x3 - 3.0

* FUNCTION £

f = (x1 + 3.0%x2 + x3)**x2 + 4.0%x(x1 - x2)**x2

* END
e Results
n=3 TF TG | TNG | WR | WRN
SYM | 0.0403 | 0.0725 | 0.1645 | 1.80 4.08
GEN | 0.0026 | 0.0091 | 0.0139 | 3.51 5.35

e Conclusion: Obviously the compiled FORTRAN code requires much less calcula-
tion time. Although the initial program is precompiled, the resulting intermediate
code must still be interpreted, e.g. by performing look-ups in operator or symbol

tables.

Example 2:

e Exponential data fitting:

h(%ﬂ = X12273 (

Ty — T2

21

e—a72(t—7') +

S PO
Z9

p AT IS sty T4 TG (i)

z3

13

Z4

where

2 (r3 — x9) (x5 — T2) (6 — T2)
22 = (w2 — x3)(w5 — x3) (w6 — 3)
z3 = (w9 —x5)(w3 — x5)(26 — T5)
2 = (w2 — x) (23 — 6) (x5 — To)

To avoid division by zero, we replace any of the z;-s by a small value, as soon as
the z;-value is below that tolerance.

The model function is quite typical for a broad class of practical application
problems, which are denoted as nonlinear data fitting, parameter estimation or
least squares problems. Given a set of experimental data {¢;} and {y;}, i =
1,...,m, one has to determine parameters z1,..., x,, so that the distance of the
model function and the experimental data is minimized in the Ly-norm. More
precisely we want to minimize the expression

m

> (h(@,ti) — y:)*

i=1
over all z € R™.

In the subsequent PCOMP program, we have n = 7 and m = 14, where the
data sets {t;} and {y;} are given in the form of constants. The last variable
plays the role of a lag time and is called 7. Since typical nonlinear least squares
codes require the calculation of m individual function values instead of the sum
of squares, the PCOMP code is designed to compute m function values of the
form fi(z) = h(z,t;) —yi, i =1,...,m.

e Variables:

(21, ..., w6, 7) = (1.0, 3.4148, 1.33561, 0.3411, 1.0278, 0.05123, 0.2)

e PCOMP program:

C Exponential parameter estimation
* PARAMETER

m= 14
* SET OF INDICES

indobs = 1..m

14

REAL CONSTANT

eps = 1.D-12

t(i) = 0.1%i, i in indobs
t(1) = 0.0

TABLE y(i), i in indobs
.238
.578
.612
.650
.661
.658
.652
.649
.647
.645
.644
.644
.643
.644

© 00 N O O WN -

= o
= O

—_
N

—
w
O O O O O O O OO OO o oo

H
N

VARIABLE
x1, x2, x3, x4, x5 , x6, tau

FUNCTION f(i), i in indobs
x42 = x4 - x2
x32 = x3 - x2
xb2 = xb - x2
x62 = x6 - x2
x43 = x4 - x3
xb63 = x5 - x3
x63 = x6 - x3
x45 = x4 - x5
x65 = x6 - x5
x46 = x4 - x6

z1l = x32%x52%x62

if (abs(zl).lt.eps) then
zl = eps

endif

z2 = -x32%x53*x63

if (abs(z2).lt.eps) then
z2 = eps

endif

15

z3 = xb52*x53*x65

if (abs(z3).lt.eps) then
z3 = eps

endif

z4 = —-x62*x63*x65

if (abs(z4).1lt.eps) then
z4 = eps

endif

f(i) = x1*x2*x3x*

/ (x42/z1*dexp (-x2* (t (1) -tau))
/ + x43/z2%dexp (-x3* (t (i) -tau))
/ + x45/z3*dexp (-x5* (t (i) -tau))
/ + x46/z4*dexp (-x6*(t (i) -tau))) - y(i)
* END
e Results:

n=7| TF| TG | TNG | WR | WRN
SYM | 1.63 | 5.22 | 12.94 | 3.20 | 7.93
GEN |0.16 | 1.01 | 1.35|6.13 | 8.20

e Conclusion: The differences in calculation times between the compiled FOR-
TRAN code and the interpreted one are as significant as those of Example 1.
The work ratio for the generated code is larger than 3, since the source code
contains additional assignment statements to pass intermediate values.

Example 3:
e Problem TP295 of Schittkowski (1987b):

n—1

f(z) = Z 100(zi1 —27)% + (1 — z;)?

The optimization problem consists of minimizing f(x) with different dimensions
n. It is a generalization of the well-known banana function of Rosenbrock (1969)
and used here to test the effect of varying dimensions.

e Variables:
(21, .y 20) = (=1.2,1.0,-1.2, 1.0, ...)

e PCOMP program:

16

c TP295 (n=10)

* SET OF INDICES
indn = 1..10
indnml = 1..9

* VARIABLE
x(i), i in indn

* FUNCTION £
f = sum(100*(x(i+1) - x(A)**2)**x2 + (1 - x(i))**2, i in indnml)

* END

Results:

Symbolic Interpretation Generated and Compiled Code
n || TF TG | TNG| WR | WRN | TF | TG | TNG | WR | WRN
10 || 0.11 | 0.38 1.18 | 3.49 | 10.83 || 0.01 | 0.04 | 0.08 | 5.47 | 12.13
20 | 0.21 | 1.30 445 | 6.14 | 21.00 || 0.01 | 0.08 | 0.30 | 5.80 | 22.08
30 || 0.31 | 2.76 9.74 | 878 | 31.00 || 0.02 | 0.12 | 0.66 | 5.91 | 32.21
40 || 0.42 | 4.76 | 17.21 | 11.34 | 41.00 || 0.03 | 0.16 | 1.16 | 6.01 | 42.51
50 || 0.2 | 7.31| 26.78 | 13.96 | 51.15 | 0.03 | 0.21 | 1.80 | 6.06 | 52.60
60 || 0.63 | 10.38 | 38.34 | 16.49 | 60.92 || 0.04 | 0.25 | 2.57 | 6.16 | 62.62
70 || 0.73 | 14.12 | 51.92 | 19.29 | 70.93 || 0.05 | 0.30 | 3.49 | 6.19 | 72.73
80 || 0.84 | 18.34 | 67.62 | 21.86 | 80.59 || 0.06 | 0.34 | 4.56 | 6.17 | 82.78
90 || 0.96 | 23.27 | 87.73 | 24.13 | 91.00 || 0.06 | 0.38 | 5.85 | 6.08 | 92.74

100 || 1.07 | 28.30 | 107.37 | 26.56 | 100.76 || 0.07 | 0.44 | 7.15 | 6.33 | 103.02

Conclusion: The numerical test results verify the theoretical conclusions of Sec-
tion 2. The reverse accumulation algorithm has a bounded work ratio, where the
work ratios for forward accumulation and numerical approximation are propor-
tional to n. The results are illustrated in Figure 1. Numerical differentiation of
generated code is still somewhat faster than forward accumulation of interpreted
code.

17

Example 4:

e Helmholtz energy function (Griewank (1989)):

i a'Ax 5 1+ (1+v2)blz
0T 8Tz & 1+ (1—v2)b72

f(z) =RT> x;log |
i=1

The above function was used by Griewank (1989) to test and illustrate symbolic
versus automatic differentiation on the one hand and the reverse and forward
accumulation algorithms on the other. In our tests we let A be the Hilbert-
matrix, ie. a;; = ﬁ, i, = 1,...,n, where a; ; denotes an element of A, and
we set b; = 0.00001 for ¢ = 1, ..., n, where b; is the i-th element of the vector b.

e Variables:
(1, .0y Tp) = (2.0,2.0,...)

e PCOMP program:

c Helmholtz energy function (n=10)

* SET OF INDICES
index = 1..10

* REAL CONSTANT
r = 8.314
t = 273.0
cl = 1.0 + dsqrt(2.0)

c2 = 1.0 - dsqrt(2.0)

c3 = dsqrt(8.0)

a(i,j)=1/(i+j-1), i in index, j in index
b(i)=0.00001, i in index

* VARIABLE
x(I), i in index

* FUNCTION £
bx = sum(b(i)*x(i), i in index)
xax = sum(x(i)*sum(a(i,j)*x(j), j in index), i in index)
f = rxtxsum(x(i)*dlog(x(i)/(1 - bx)), i in index)
/ - xax*dlog((1 + cl¥bx)/(1 + c2%*bx))/(c3*bx)

* END

18

e Results:

Symbolic Interpretation Generated and Compiled Code

n TF TG TNG | WR | WRN | TF TG | TNG | WR | WRN
5 0.21 0.47 1.26 | 2.24 5.97 || 0.02 | 0.07 0.15 | 3.08 6.19
10 0.60 1.96 6.62 | 3.26 | 11.00 || 0.06 | 0.21 0.67 | 3.53 | 11.20
20 2.01 | 10.72 42.32 | 5.32 | 21.01 | 0.19 | 0.67 3.95 | 3.57 | 21.13
30 || 4.28 | 31.20 | 13226 | 7.29 | 30.93 | 0.39 | 1.42 | 12.26 | 3.60 | 31.09
40 7.48 | 69.50 | 306.53 | 9.29 | 40.97 | 0.64 | 2.42 | 26.12 | 3.81 | 41.09
50 || 11.71 | 130.70 | 597.21 | 11.16 | 51.00 || 1.05 | 3.68 | 53.94 | 3.49 | 51.16
60 || 17.10 | 219.70 | 1042.60 | 12.85 | 60.97 || 1.53 | 5.21 | 93.64 | 3.41 | 61.25
70 || 22.30 | 342.80 | 1582.10 | 15.37 | 70.95 || 2.03 | 7.70 | 146.93 | 3.78 | 72.25
80 || 29.25 | 505.00 | 2363.25 | 17.27 | 80.78 || 2.67 | 11.00 | 216.87 | 4.12 | 81.19

e Conclusion:

The results repeat the observations made for Example 3; see also

Figure 2. Obviously the reverse accumulation algorithm has a bounded work
ratio, where the work ratios for forward accumulation and numerical approxima-
tion are proportional to n. The conclusions are very similar to made by Griewank
(1989), if we neglect differences based on other hardware configuration and, in
particular, different data organizations.

symbolic approximation
code approximation

120 120
100 100
80 80
60 60
40 40
20 20
0 0

90 100

symbolic code

generated code 10

Figure 1: Work ratios for test function TP295

19

90 90
80 \ 80
70

70

60 60

50 50
40 40
30 30
20 20
10 10

0

symbolic approximation
code approximation

symbolic code
generated code 5 10

Figure 2: Work ratios for Helmholtz equation

5. Program Organization

The PCOMP system consists of three modules that can be executed completely inde-
pendently from each other. There are also some auxiliary routines, in particular an
error routine called SYMERR to make error messages readable, and a routine with
the name SYMPRP to read intermediate code generated by the parser. All routines
are implemented in FORTRAN77 and tested on the following systems: VAX/VMS,
HP-UX, MS-DOS (WATFOR, MS-FORTRAN 5.0, LAHEY 5.01).

(1) Parser:
The source code is analysed and compiled into an intermediate code, which can
then be processed by the other routines. The subroutine to be executed has
the name SYMINP. The syntax of the code is described in the form of a formal
grammar; see Appendix A. The parser was generated in C by the yacc-compiler-
compiler of UNIX and then transformed into FORTRAN by hand. The following
files are needed to link the parser:

PCOMP_P1.FOR
PCOMP_P2.FOR
PCOMP_EV.FOR

parser routines

parser routines

numerical evaluation of analytical expressions used
- in index or constant declarations

external functions provided by the user

eITOr 1Messages

PCOMP_EX.FOR
PCOMP_ER.FOR

20

To give an example, we list a possible implementation that was used to generate
intermediate code for our numerical tests.

parameter (lrsym=15000, lisym=15000)
double precision rsym(lrsym)
integer isym(lisym), larsym, laisym, ierr, lrow
open(2,file=’pcomp.fun’, status=’UNKNOWN’)
open(3,file=’pcomp.sym’, status=’UNKNOWN’)
call SYMINP(2,3,rsym,lrsym,isym,lisym,larsym,laisym,ierr,lrow)
if (ierr.gt.0) goto 900
goto 9999
900 call SYMERR(ierr,lrow)
9999 continue
close(2)
close(3)
stop
end

(2) Function and Gradient Evaluation:

Proceeding from an intermediate code generated by SYMINP, function and gra-
dient values are evaluated in the form of subroutines called SYMFUN and SYM-
GRA. They can be linked to any user program as required by the underlying
application. Gradients are computed by forward accumulation despite the draw-
backs outlined in the previous sections, to reduce the size of internal working
arrays. The following program files are available and must be linked to the code
provided by the user:

PCOMP_S.FOR function and gradient evaluation

PCOMP_EV.FOR - evaluation of expressions from given postfix notation
PCOMP_EX.FOR external functions provided by the user
PCOMP_ER.FOR error messages

In the next example, we illustrate a possible implementation of the routines
for evaluating function and gradient values. We assume that the symbol file
pcomp.sym contains the intermediate code of one function with two variables.

implicit double precision(a-h,o0-z)

parameter (nmax=100, mmax=50, lrsym=30000, 1isym=10000)
dimension x(nmax), f(mmax), df(mmax,nmax), rsym(lrsym),
/ isym(lisym)

logical act(mmax)
open(3,file=’pcomp.sym’,status=’"UNKNOWN’)

n=2

21

m=1
x(1)=1.0
x(2)=-1.2
act(1)=.true.
call SYMPRP(3,rsym,lrsym,isym,lisym,larsym,laisym,ierr)
if (ierr.gt.0) goto 900
call SYMFUN(x,n,f,m,act,rsym,lrsym,isym,lisym,ierr)
if (ierr.gt.0) goto 900
call SYMGRA(x,n,f,m,df,mmax,act,rsym,lrsym,isym,lisym,ierr)
if (ierr.gt.0) goto 900
write(*,*) f£(1),df(1,1),df(1,2)
goto 9999
900 call SYMERR(ierr,O0)
9999 continue
close(3)
stop
end

(3) Generation of FORTRAN Code:
Proceeding from an intermediate code generated by SYMINP, FORTRAN sub-
routines for function and gradient evaluation are generated. They can be com-
piled and linked separately from the PCOMP system. Gradients are computed
by reverse accumulation. There is only one file to be linked to the user code, and
the error routine as before:

PCOMP _G.FOR - generate FORTRAN code
PCOMP_ER.FOR - error messages

parameter (lrsym=15000, 1isym=15000)
double precision rsym(lrsym)
integer isym(lisym), larsym, laisym, ierr, lrow
open(3,file=’pcomp.sym’, status=’UNKNOWN’)
open(4,file="pcomp.for’, status=’UNKNOWN’)
call SYMPRP(3,rsym,lrsym,isym,lisym,larsym,laisym,ierr)
if (ierr.gt.0) goto 900
call SYMFOR(4,rsym,lrsym,isym,lisym,ierr)
if (ierr.gt.0) goto 900
goto 9999
900 call SYMERR(ierr,0)
9999 continue
close(3)
close(4)
stop
end

22

Documentation of all subroutines within the files mentioned is given by Dobmann
(1993) and Liepelt (1990) together with some additional information on the data struc-
tures. In the remainder of this section, we describe only the use of subroutines that
can be called from a user program.

Subroutine SYMINP:

e Purpose:

The subroutine compiles symbolically defined nonlinear functions and generates
an intermediate code.

e Calling sequence:
SYMINP (INPUT,SYMFIL, WA LWA ,TWA LIWA , UWA , UIWA IERR,LNUM)

e Parameters:
INPUT

SYMFIL

WA (LWA)

LWA

TWA (LIWA)

LIWA
UWA, UIWA

IERR

LNUM

When calling SYMINP, the integer value of INPUT is the
number of the file that contains the program text.

An integer identifying the output file number to

which the intermediate code is to be written.

Double precision working array of length LWA used internally
to store and process data. When leaving SYMINP, WA con-
tains the generated intermediate code in its first UWA positions.
Length of the working array WA. LWA must be sufficiently
large depending on the code size.

Integer working array of length LIWA. On return, IWA contains
the integer part of the intermediate code in its first UTWA
positions.

Length of the working array IWA. LIWA must be sufficiently
large depending on the code size.

Storage actually needed for the intermediate code in the form
of integers.

On return, IERR shows the termination reason of SYMINP:
IERR = 0 : Successful termination.

IERR > 0 : There is a syntax error in the input file.

Call SYMERR for more information.

In case of unsuccessful termination, LNUM contains

the line number where the error was detected.

Subroutine SYMERR:

23

e Purpose:

Proceeding from an error code IERR (> 0) and, if available from a SYMINP call,
a line number, SYMERR generates an output message on the standard device.

e Calling sequence:
SYMERR (LNUM,IERR)

e Parameters:
When calling SYMERR after a SYMINP execution, LNUM has
to contain the corresponding line number value as determined
by SYMINP.

The numerical value of the termination reason is to be

inserted when calling SYMERR.

LNUM -

IERR -

Subroutine SYMPRP:

e Purpose:

The subroutine reads intermediate code from a file generated by a SYMINP
call and fills two working arrays with the code for further processing within
subroutines SYMFUN, SYMGRA and SYMFOR.

e Calling sequence:
SYMPRP (SYMFIL,WA ,LWA TWA LIWA , UWA UIWA,IERR)

e Parameters:

SYMFIL

WA (LWA)

LWA

TWA (LIWA)

LIWA
UWA,UIWA

IERR

An integer identifying the input file number, which

contains the intermediate code generated by SYMINP.
Double precision working array of length LWA that contains
the intermediate code in its first UWA positions when
leaving SYMPRP.

Length of the working array WA. LWA must be at least
UWA as determined by SYMINP.

Integer working array of length LIWA. On return, IWA
contains the integer part of the intermediate code in its

first UITWA positions.

Length of the working array IWA. LIWA must be at least
UIWA as determined by SYMINP.

Storage actually needed for the intermediate code in

WA and TWA.

On return, IERR shows the termination reason of SYMPRP:
IERR = 0 : Successful termination.

IERR > 0 : There is an error in the input file.

Call SYMERR for more information.

24

Subroutine SYMFUN:

e Purpose:
The intermediate code is passed from a SYMINP call to SYMFUN in form of a
real and an integer working array. Given any variable vector x, the subroutine
computes the corresponding function values f;(x). The functions that are to be
evaluated by SYMFUN must be specified by a logical array.

e Calling sequence:
SYMFUN (X,N,F M,ACTIVE,WA LWA TWA LIWA IERR)

e Parameters:

X(N) - Double precision array of length N that contains the
variable values for which functions are to be evaluated.

N - Dimension, i.e. number of variables.

F(M) - Double precision array of length M to pass the function
values computed by SYMFUN, to the user program.

M - Total number of functions on the input file.

ACTIVE(M) - Logical array of length M that determines the functions

to be evaluated. ACTIVE must be set by the user when
calling SYMFUN:
ACTIVE(J) = .TRUE. : Compute function value g;(z).
ACTIVE(J) = .FALSE. : Do not compute function value g;(z).
Double precision working array of length LWA that contains
the intermediate code in its first UWA positions.
LWA - Length of the working array WA. LWA must be at

least UWA as determined by SYMINP.

WA (LWA)

IWA(LIWA) - Integer working array of length LIWA. IWA contains the
integer part of the intermediate code in its first UTWA
positions.

LIWA - Length of the working array IWA. LIWA must be at least

UIWA as determined by SYMINP.
IERR - On return, IERR shows the termination reason of SYMFUN:
IERR = 0 : Successful termination.
IERR > 0 : There is an error in the input file.
Call SYMERR for more information.

Subroutine SYMGRA:

e Purpose:
The intermediate code is passed from a SYMINP call to SYMGRA in the form

25

of a real and an integer working array. Given a variable vector x, the subroutine
computes the corresponding function and gradient values f;(z) and V f;(z). The
functions and gradients that are to be evaluated by SYMGRA must be specified

by a logical array.

e Calling sequence:

SYMGRA (X,N,F,M,DF, MMAX,ACTIVE,WA,LWA IWA LIWA IERR)

e Parameters:

X(N) ;

F(M) -
M -
DF(MMAX,N) -

MMAX -
ACTIVE(M) -

WA(LWA) ;
LWA ;

TWA(LIWA) -

LIWA -

IERR -

Subroutine SYMFOR:

Double precision array of length N that contains the
variable values for which functions and gradients are to be
evaluated.

Dimension, i.e. number of variables.

Double precision array of length M to pass the function
values computed by SYMGRA to the user program.

Total number of functions on the input file.
Two-dimensional double precision array to take over the
gradients computed by SYMGRA. The row dimension

must be MMAX in the driving routine.

Row dimension of DF. MMAX must not be smaller than M.
Logical array of length M that determines the functions
and gradients to be evaluated. ACTIVE must be set by

the user when calling SYMGRA:

ACTIVE(J) = .TRUE. : Evaluate function g;(z).
ACTIVE(J) = .FALSE. : Do not evaluate function g,(z).
Double precision working array of length LWA that contains
the intermediate code in its first UWA positions.

Length of the working array WA. LWA must be at least
UWA as determined by SYMINP.

Integer working array of length LIWA. IWA contains

the integer part of the intermediate code in its

first UIWA positions.

Length of the working array IWA. LIWA must be at

least UIWA as determined by SYMINP.

On return, IERR shows the termination reason of SYMGRA:
IERR = 0 : Successful termination.

IERR > 0 : There is an error in the input file.

Call SYMERR for more information.

26

e Purpose:
The intermediate code is passed from a SYMINP call to SYMFOR in the form of
a real and an integer working array. Then SYMFOR generates two subroutines
for function and gradient evaluation on a given output file. The calling sequences
of the generated subroutines are

XFUN (X,N,F,M,ACTIVE,IERR)

and

XGRA (X,N,FM,DF MMAX ,ACTIVE,IERR),

where the meaning of the parameters is the same as for SYMFUN and SYMGRA,

respectively.

e Calling sequence:
SYMFOR (XFIL,WA ,LWA IWA LIWA IERR)

e Parameters:

XFIL - An integer containing the number of the file
on which the codes are to be written.
WA(LWA) - Double precision working array of length LWA that

contains the intermediate code in its first UWA positions
when calling SYMFOR. Additional storage is required

by SYMFOR.
LWA - Length of the working array WA.
IWA(LIWA) - Integer working array of length LIWA. IWA contains
the integer part of the intermediate code in its first
UIWA positions when calling SYMFOR, and is needed for
additional working space.
LIWA - Length of the working array TWA.
IERR - On return, IERR shows the termination reason of SYMFOR:

IERR = 0 : Successful termination.
[ERR > 0 : There is an error in the input file.
Call SYMERR for more information.

27

6. Inclusion of External Functions

For the practical use of PCOMP, it is extremely important to have the possibility
of defining an interface between PCOMP and the user system. In the frame of a
mechanical structural optimization system, for example, one might wish to include
expressions of the form sigma(i) in the PCOMP program to identify the stress at a
node ¢. Other examples are the evaluation of inner products or the input of data from
a file or a user program.

To include external functions in PCOMP, the following alterations are required:

e Change the number of external functions MAXEXT in subroutines YYPAR,
EVAL, REVCDE, FORCDE, FORDF and KEYWD.

e Insert the function names used in the source code, in the array EXTNAM. The
subroutine to be altered is KEYWD.

e Define the number of additional integer parameters of the functions to be de-
fined, in the array EXTTYP. The array is found in subroutines YYPAR, EVAL,
REVCDE, FORCDE and FORDF.

e Implement subroutines that evaluate function and gradient values and insert their
calling sequences in subroutines EXTFUN and EXTGRA.

A wuser can change the module system provided by the authors. The interface
functions EXTFUN and EXTGRA are executed within PCOMP in the following way:

Subroutine EXTFUN:

e Purpose:
Calling user-provided subroutines to evaluate function values that correspond to
symbolic names in a source program.

e Calling sequence:
EXTFUN (EXT,X,N,F.EXTPAR)

e Parameters:

EXT - Integer value to identify the EXT-th external function value
to be computed. The order coincides with the order of the
symbolic names in the array EXTNAM.

28

EXTPAR(2)

Double precision array of length N that contains the variable
values for which an external function is to be evaluated.
Dimension, i.e. number of variables.

Double precision variable to take over the value of the
function on return.

Integer array of length two containing up to two actual
parameters when calling EXTFUN.

Subroutine EXTGRA:

e Purpose:

Calling user-provided subroutines to evaluate gradient values that correspond to
symbolically defined functions in a source program.

e Calling sequence:
EXTGRA (EXT,X,N,DF,EXTPAR)

e Parameters:

EXT

EXTPAR(2)

Example 5:

Integer value to identify the EXT-th external function for
which the gradient is to be computed. The order coincides
with the order of the symbolic names in the array EXTNAM.
Double precision array of length N that contains the variable
values for which an external gradient is to be evaluated.
Dimension, i.e. number of variables.

Double precision array of length N to take over the gradient
value of function EXT on return.

Integer array of length two containing up to two actual
parameters when calling EXTFUN.

e Helmholtz energy function (Griewank (1989)):

f(z) = RTZxZ» log 1
i—1

i alAx o 1+ (1+v2)bTx
-l /BbTx 14 (1 —V2)bTx

We consider again the Helmholtz energy function that was also programmed in
the PCOMP language in Section 4, Example 4. By investigating that code in
detail, we observe immediately that some operations could be performed much
faster ’in core’, in particular inner products. Moreover certain intermediate data
could be passed to the gradient evaluation, if we assume that a function evaluation

29

always preceeds a gradient evaluation. The following PCOMP program contains
six external functions, where there is still an inner product in the PCOMP code
that could be eliminated as well. It is left for demonstration purposes.

e Variables:
(1, .0y zp) = (2.0,2.0,...)

e PCOMP program:

c Helmholtz function with extermals (n=10)
* PARAMETER

n =10
* SET OF INDICES

index = 1..n

* REAL CONSTANT
r = 8.314
t = 273.0

cl = 1.0 + dsqrt(2.0)

c2 = 1.0 - dsqrt(2.0)
c3 = dsqrt(8.0)
* VARIABLE

x(i), i in index

* FUNCTION £
xax = sum(x(i)*ax(i), i in index)
f = r*t*x(xlogx - dlog(l - bx)*x1l) -
/ xax*dlog((1 + clxbx)/(1 + c2%bx))/(c3*bx)

* END

e Fxternal subroutines:

subroutine EXTFUN (ext,x,n,f,extpar)
integer ext, n, extpar(2)
double precision x(n), f
goto (1,2,3,4) ext
1 call AX(x, n, f, extpar(1))
return

30

2 call BX(x, n, f)
return

3 call XLOGX(x, n, f)
return

4 call X1(x, n, f)
return
end

subroutine EXTGRA (ext, x, n, df, extpar)
integer ext, n, extpar(2)
double precision x(n), df(n)
goto (1,2,3,4) ext

1 call DAX(x, n, df, extpar(1l))
return

2 call DBX(x ,n ,df)
return

3 call DXLOGX(x ,n ,df)
return

4 call DX1(x, n, df)
return
end

subroutine AX (x, n, f, i)
double precision x(n), f, a, b

£=0.0
do 1 j=1,n
1 f=f + 1.0/dble(i+j-1)*x(j)
return
end

subroutine DAX (x, n, df, i)
double precision x(n), df(n), a, b
do 1 j=1,n

1 df(j)=1.0/dble(i+j-1)
return
end

subroutine BX (x, n, f)
double precision x(n), f, a, b

£=0.0
do 1 j=1,n
1 f=f + 0.00001*x(j)
return
end

31

subroutine DBX (x, n, df)
double precision x(n), df(n), a, b

do 1 j=1,n

1 df (j)=0.00001
return
end

subroutine XLOGX (x, n, f)
double precision x(n), f, logx
common /extlog/ logx(100)
£=0.0
do 1 j=1,n
logx(j)=dlog(x(j))

1 f=f + x(j)*logx(j)
return
end

subroutine DXLOGX (x, n, df)
double precision x(n), df(n), logx
common /extlog/ logx(100)
do 1 j=1,n

1 df (j)=logx(j) + 1.0
return
end

subroutine X1 (x, n, f)
double precision x(n), f
£=0.0
do 1 j=1,n

1 f=f + x(j)
return
end

subroutine DX1 (x, n, df)
double precision x(n), df(n)

do 1 j=1,n
1 df(j)=1.0
return
end
o Results:

32

Symbolic Interpretation Generated and Compiled Code
n || TF TG | TNG | WR | WRN || TF | TG | TNG | WR | WRN
51 0.07 | 0.16 0.48 | 2.13 6.36 || 0.03 | 0.08 0.19 | 2.52 6.30
10 || 0.13 | 0.38 1.46 | 2.88 | 11.10 || 0.07 | 0.17 0.79 | 2.37 | 11.26
20] 0.31 | 0.90 6.46 | 2.96 | 21.12 | 0.21 | 0.48 4.39 | 2.32 | 21.19
30 | 055 | 1.76 | 17.22 | 3.17 | 31.08 || 0.42 | 0.96 | 13.12 | 2.27 | 31.14
40 | 0.88 | 291 | 36.14 | 3.30 | 40.93 || 0.71 | 1.60 | 29.29 | 2.25 | 41.12
50 || 1.29 | 4.32 | 65.55 | 3.36 | 50.89 || 1.08 | 2.43 | 55.31 | 2.25 | 51.10
60 || 1.76 | 5.95| 107.40 | 3.38 | 60.94 || 1.53 | 3.44 | 93.61 | 2.25 | 61.11
70 || 2.32 | 7.95 | 164.50 | 3.43 | 70.88 || 2.05 | 4.61 | 146.34 | 2.25 | 71.21
80 || 2.95 | 10.27 | 239.12 | 3.47 | 80.93 || 2.65 | 5.93 | 215.65 | 2.23 | 81.23
90 || 3.70 | 13.20 | 334.30 | 3.57 | 90.35 || 3.33 | 7.24 | 303.21 | 2.17 | 91.06
100 || 4.48 | 15.40 | 451.68 | 3.44 | 100.78 || 4.08 | 9.00 | 412.52 | 2.20 | 101.06

e Conclusion: The results show the possible benefits very clearly. By extracting
general-purpose routines in the form of externals, the work ratios for automatic
differentiation increase much slower than those for numerical differentiation. Also
the absolute time differences between interpreted and generated code decrease.

33

Acknowledgements

The authors would like to express their gratitude to the referees of the paper. They
made substantial proposals for improvements of the PCOMP code, and tested the code
very thoroughly.

34

APPENDIX A: Formal Grammar

The syntax of PCOMP is based on a formal language that is listed below. The in-
put format was chosen according to the requirements of the yacc-compiler-compiler of
UNIX. The C code generated by yacc was translated into FORTRAN by hand.

i
#include <ctype.h>
#include <stdio.h>

h}

%token RANGE, RELOP, AND, OR, NOT, INUM, RNUM, ID, SUM, PROD, IN
%token IF, THEN, ELSE, ENDIF, STANDARD, EXTERN
%token PARAM, INDEX, REAL, INT, TABLE, VAR, FUNC, END, GOTO, LABEL
%token CONTINUE
%left OR
%left AND
%left NOT
%nonassoc RELOP
hleft ’+7 =
hleft %7 /2
%left UMINUS
hright °°°
he
module : declaration_blocks end_module {};
declaration_blocks : declaration_blocks declaration_block
(I
declaration_block : param_head param_declarations
| index_head index_declarations
| real_head real_declarations
| integer_head integer_declarations
| table_head table_declarations
| variable_head variable_declarations
| function_head stmts {};
param_head : PARAM ’\n’;
param_declarations : param_declarations param_declaration
(I
param_declaration : ID ’=’ INUM ’\n’ {};
index_head : INDEX ’\n’;
index_declarations : index_declarations index_declaration
(I

index_declaration : ID ’=’ index_delimiter RANGE index_delimiter ’\n’ {}

35

| ID >=’> INUM ’,’ INUM {} opt_inum ’\n’
| ID ’=’ ind_expr ’,’ ID ’=’ index_delimiter
RANGE index_delimiter ’\n’ {}
index_delimiter : ID {}
| INUM
opt_inum : opt_inum ’,’ INUM {}
(I
ind_expr : ind_expr ’+’ ind_expr {}
| ind_expr ’-’ ind_expr {}
| ind_expr ’*’ ind_expr {}
| ind_expr ’/’ ind_expr {}
| >’ ind_expr ’)°
| °-’ ind_expr %prec UMINUS {}
| INUM {}
| ID {};
real_head : REAL ’\n’;
real_declarations : real_declarations real_declaration
I
real_declaration : ID ’=’ expr ’\n’ {}
| ID >(* ID ’)’ ’=’ expr ’,’” ID IN ID ’\n’ {}
| ID >’ INUM ’)’ ’=’ expr ’\n’ {}
| ID >’ ID ’,” ID ’)’ ’=’ expr ’,’
ID IN ID ’,” ID IN ID ’\n’ {}
| ID > (* INUM ’,’ INUM ’)’ ’=’ expr ’\n’ {};
integer_head : INT ’\n’;
integer_declarations : integer_declarations integer_declaration
(I

integer_declaration : ID ’=’ expr ’\n’ {}

| ID (> ID ’)’ ’=’ expr ’,’ ID IN ID ’\n’ {}
| ID >(°> INUM ’)’ ’=’ expr ’\n’ {}
| ID (> ID ’,” ID ’)’ ’=’ expr ’,’

ID IN ID ’,’ ID IN ID ’\n’ {};

| ID >(’ INUM ’,’ INUM)’ ’=’ expr ’\n’ {};
table_head : TABLE ID ’(’ ID ’)’ ?,” ID IN ID ’\n’ {}
| TABLE ID °>(’> ID ’>,” ID ’)’ °,”> ID IN ID ’,’ ID IN ID ’\n’ {};
table_declarations : table_declarations table_declaration

table_declaration : INUM RNUM ’\n’ {}
| INUM °-> RNUM ’\n’ {}
| INUM INUM RNUM °’\n’ {}
| INUM INUM °’-’ RNUM ’\n’ {};
variable_head : VAR ’\n’;
variable_declarations : variable_declarations variable_declaration

(I

36

variable_declaration : ID >(’> ID ’)’ ’,? ID IN ID ’\n’ {}
| ID opt_id ’\n’ {3};
opt_id : opt_id ’,’ ID {}
I {};
function_head : FUNC ID ’\n’ {}
| FUNC ID (> ID ’)’ ’,’ ID IN ID ’\n’ {};
stmts : stmts stmt
(I
stmt : ID ’=’ expr ’\n’ {}
| ID >’ ID)’ ’=’ expr ’\n’ {}
| IF {} °(’ logic_expr ’)’ {} THEN ’\n’
stmts {} opt_else_if opt_else ENDIF ’\n’ {}
| LABEL CONTINUE ’\n’ {}
| GOTO INUM ’\n’ {};
opt_else_if : opt_else_if ELSE IF ’(’ logic_expr ’)’ {}
THEN ’\n’ stmts {}
I
opt_else : ELSE ’\n’ stmts
I {3
expr : expr '+’ expr {}
| expr ’-’ expr {}
| expr ’x’ expr {}
| expr ’/’ expr {}
| expr ’°’ expr {}
| > expr ’)’
| °-’ expr %prec UMINUS {}
| number
| identifier
| standard_function
| extern_function
| SUM {} >(’ expr ’,” ID IN ID ’)’ {}
| PROD {} ’(C’ expr ’,’> ID IN ID ’)’ {};
logic_expr : logic_expr AND logic_expr {}
| logic_expr OR logic_expr {3}
| NOT logic_expr {}
| >’ logic_expr ’)’
| expr RELOP expr {};
number : RNUM {}
| INUM {};
identifier : ID {}
| ID ’(’ ind_expr ’)’ {}
| ID °(’ ind_expr ’,’ ind_expr ’)’ {};
standard_function : STANDARD {}
| STANDARD ’(’ expr ’)’ {}

37

| STANDARD ’(’ expr ’,’ expr ’)’ {};

extern_function : EXTERN {}
| EXTERN ’(° ind_expr ’)° {}
| EXTERN °(’ ind_expr ’,’ ind_expr ’)’ {};

end_module : END ’\n’;
Dot

38

APPENDIX B: Error Messages

PCOMP reports error messages in the form of integer values of the variable IERR and,
whenever possible, also line numbers LNUM. The meaning of the messages is listed in
the following table. Note that the corresponding text is displayed if the error routine
SYMERR is called with the parameters LNUM and ITERR.

1 - file not found - no compilation
2 - file too long - no compilation
3 - identifier expected
4 - multiple definition of identifier
5 - comma expected
6 - left bracket expected
7 - identifier not declared
8 - data types do not fit together
9 - division by zero
10 - constant expected
11 - operator expected
12 - unexpected end of file
13 - range operator ’..” expected
14 - right bracket ’)” expected
15 - ’THEN’ expected
16 - ’ELSE’ expected
17 - ’ENDIF’ expected
18 - ’'THEN’ without corresponding 'TF’
19 - ’ELSE’ without corresponding ’TF’
20 - 'ENDIF’ without corresponding 'TF’
21 - assignment operator '=’ expected
22 - wrong format for integer number
23 - wrong format for real number
24 - formula too complicated
25 - error in arithmetic expression
26 - internal compiler error
27 - identifier not valid
28 - unknown type identifier
29 - wrong input sign
30 - stack overflow of parser

39

31
32
33
34
35
36
43
44
45
46
47
48
49
50
o1
52
53
54
55
56

syntax error

available memory exceeded

index or index set not allowed

error during dynamic storage allocation
wrong number of indices

wrong number of arguments

number of variables different from declaration
number of functions different from declaration
END - sign not allowed

FORTRAN code exceeds line

feature not yet supported

bad input format

length of working array IWA too small

length of working array WA too small
ATANH: domain error

LOG: domain error

SQRT: domain error

ASIN: domain error

ACOS: domain error

ACOSH: domain error

40

APPENDIX C: Generated FORTRAN Code for Example 3

To give an example of the structure of a FORTRAN code generated automatically by
PCOMP in reverse accumulation mode, the following lines list the code of Example 3
of Section 4, i.e. of problem function TP295, with 20 variables.

SUBROUTINE XFUN (X,N,F,M,ACTIVE,IERR)
INTEGER N,M

DOUBLE PRECISION X(N),F(M)

LOGICAL ACTIVE(M)

INTEGER IERR

DOUBLE PRECISION XAUX(21:211)
INTEGER IO,IXO
INTEGER I,0FS

INTEGER VINDEX(39)
INTEGER VICONS(6)
DOUBLE PRECISION VRCONS(1)
DATA (VINDEX(I), I=1,39)
/1,2,3,4,5,
6,7,8,9,10,
11,12,13,14,15,
16,17,18,19,20,
1,2,3,4,5,
6,7,8,9,10,
11,12,13,14,15,
16,17,18,19/
DATA (VICONS(I), I=1,6)
1 /20,20,1,19,100,
2 2/
DATA (VRCONS(I), I=1,1)
1 /.00000000000000000D+00/

O ~NO Ok WN -

IF (N .NE. 20) THEN
IERR=43

RETURN

ENDIF

IF (M .NE. 1) THEN
TERR=44

RETURN

ENDIF

41

Q

14

a > W N -

0FS=0

IF (ACTIVE(1)) THEN

XAUX (21)=0.0D0

DO 14 I0=0,18

IX0=VINDEX (21+I0)

XAUX (22+0FS)=DBLE(100)

XAUX (23+0FS) =X (IX0) **(2)

XAUX (24+0FS) =X (1+IX0)-XAUX (23+0FS)
XAUX (25+0FS) =XAUX (24+0FS) ** (2)

XAUX (26+0FS) =XAUX (22+0FS) *XAUX (25+0FS)
XAUX (27+0FS)=DBLE (1)

XAUX (28+0FS) =XAUX (27+0FS) -X (IX0)

XAUX (29+0FS) =XAUX (28+0FS) ** (2)

XAUX (30+0FS) =XAUX (26+0FS) +XAUX (29+0FS)
XAUX (31+0FS) =XAUX (21+0FS) +XAUX (30+0FS)
OFS=0FS+10

CONTINUE

0FS=0FS-190

F(1)=XAUX(211)

ENDIF

RETURN

END

SUBROUTINE XGRA (X,N,F,M,DF,MMAX,ACTIVE,IERR)

INTEGER N,M,MMAX

DOUBLE PRECISION X(N),F(M),DF(MMAX,N)
LOGICAL ACTIVE(M)

INTEGER IERR

DOUBLE PRECISION XAUX(21:211),YAUX(21:211)

INTEGER IO,IXO
INTEGER I,0FS

INTEGER VINDEX(39)
INTEGER VICONS(6)
DOUBLE PRECISION VRCONS(1)
DATA (VINDEX(I), I=1,39)
/1,2,3,4,5,
6,7,8,9,10,
11,12,13,14,15,
16,17,18,19,20,
1,2,3,4,5,

42

6 6,7,8,9,10,

7 11,12,13,14,15,
8 16,17,18,19/
DATA (VICONS(I), I=1,6)
1 /20,20,1,19,100,
2/
DATA (VRCONS(I), I=1,1)
1 /.00000000000000000D+00/

IF (N .NE. 20) THEN

IERR=43

RETURN

ENDIF

IF (M .NE. 1) THEN

IERR=44

RETURN

ENDIF

0FS=0

IF (ACTIVE(1)) THEN

XAUX (21)=0.0D0

DO 14 I0=0,18

IX0=VINDEX (21+I0)

XAUX (22+0FS)=DBLE (100)

XAUX (23+0FS) =X (IX0) **(2)

XAUX (24+0FS) =X (1+IX0)-XAUX (23+0FS)
XAUX (25+0FS) =XAUX (24+0FS) ** (2)

XAUX (26+0FS) =XAUX (22+0FS) *XAUX (25+0FS)
XAUX (27+0FS)=DBLE (1)

XAUX (28+0FS) =XAUX (27+0FS) -X (IX0)

XAUX (29+0FS) =XAUX (28+0FS) ** (2)

XAUX (30+0FS) =XAUX (26+0FS) +XAUX (29+0FS)
XAUX (31+0FS) =XAUX (21+0FS) +XAUX (30+0FS)
OFS=0FS+10

14 CONTINUE

15

16

0FS=0FS-190
F(1)=XAUX(211)
DO 15 I=1,20
DF(1,I)=0.0D0
CONTINUE

DO 16 I=21,210
YAUX(I)=0.0DO
CONTINUE
YAUX(211)=1.0D0
0FS=0FS+190

43

DO 3 10=18,0,-1

IX0=VINDEX (21+I0)

OFS=0FS-10

YAUX (21+0FS)=YAUX (21+0FS) +YAUX (31+0FS)

YAUX (30+0FS)=YAUX (30+0FS)+YAUX (31+0FS)

YAUX (26+0FS) =YAUX (26+0FS) +YAUX (30+0FS)

YAUX (29+0FS) =YAUX (29+0FS) +YAUX (30+0FS)

YAUX (28+0FS) =YAUX (28+0FS) +2*xXAUX (28+0FS) **x1*YAUX (29+0FS)
YAUX (27+0FS) =YAUX (27+0FS) +YAUX (28+0FS)
DF(1,IX0)=DF(1,IX0)-YAUX(28+0FS)

YAUX (22+0FS) =YAUX (22+0FS) +XAUX (25+0FS) *YAUX (26+0FS)

YAUX (25+0FS) =YAUX (25+0FS) +XAUX (22+0FS) *YAUX (26+0FS)

YAUX (24+0FS)=YAUX (24+0FS) +2*XAUX (24+0FS) **x1*YAUX (25+0FS)
DF(1,1+IX0)=DF(1,1+IX0)+YAUX (24+0FS)

YAUX (23+0FS) =YAUX (23+0FS) -YAUX (24+0FS)
DF(1,IX0)=DF(1,IX0)+2*X(IX0)**1*xYAUX(23+0FS)

CONTINUE

ENDIF

RETURN

END

44

References:

CHAR B.W., GEDDES K.O., GONNET G.H., MONEGAN M.B., WATT S.M. (1988):
MAPLE Reference Manual, Fifth Edition, Symbolic Computing Group, Dept. of
Computer Science, University of Waterloo, Waterloo, Canada

DOBMANN, M. (1993): Erweiterungen zum Automatischen Differenzieren, Diplom-
arbeit, Mathematisches Institut, Universitat Bayreuth, Bayreuth, Germany

FiscHER H. (1991): Special problems in automatic differentiation, in: Proceedings
of the Workshop on Automatic Differentiation: Theory, Implementation and Applica-
tion, A. Griewank, G. Corliss eds., Breckenridge, CO

GRIEWANK A., CorLiss G. (EDS.) (1991): Automatic Differentiation of Algo-

rithms: Theory, Implementation and Application, Proceedings of a Workshop, Breck-
enridge, CO

GRIEWANK A., JUEDES D., SRINIVASAN J. (1991): ADOL-C: A package for the
automatic differentiation of algorithms written in C/C++, Preprint MCS-P180-1190,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL

GRIEWANK A. (1989): On automatic differentiation, in: Mathematical Program-

ming: Recent Developments and Applications, ed. M. Iri, K. Tanabe, Kluwer Academic
Publishers, Boston, 83-107

HivLstroM KL.E. (1985): Users guide for JAKEF, Technical Memorandum ANL/
MCS-TM-16, Mathematics and Computer Science Division, Argonne National Labo-
ratory, Argonne, 1L

Hock W., ScHiTTKOWSKI K. (1981): Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer

IDNANT A. (1987): NLPSOLVER: User guide, 3i Corp., Park Ridge, NY

JUEDES D.W. (1991): A tazonomy of automatic differentiation tools, in: Proceed-
ings of the Workshop on Automatic Differentiation of Algorithms: Theory, Implemen-
tation and Application, A. Griewank, G. Corliss eds., Breckenridge, CO

KaAciwaDpA H., KALABA R., RosAKHOO N., SPINGARN K. (1986): Numerical
Derivatives and Nonlinear Analysis, Plenum Press, New York and London

45

KEDEM G. (1980): Automatic differentiation of computer programs, ACM Trans-
actions on Mathematical Software, Vol.6, No.2, 150-165

KELEVEDZHIEV E., KIROV N. (1989): Interactive optimization systems, Working
Paper, ITASA, Laxenburg, Austria

KM K. V. E.AL. (1984): An efficient algorithm for computing derivatives and

extremal problems, FEnglish translation, Ekonomika i matematicheskie metody, Vol.20,
No.2, 309-318

KNEPPE G. (1990): MBB-LAGRANGE: Structural optimization system for space
and aircraft structures, Report, S-PUB-0406, MBB, Munich, Germany

KREDLER C., GREINER M., KOLBL A., PURSCHE T. (1990): User’s guide for
PADMOS, Report, Institut fiir Angewandte Mathematik und Statistik, Universitat
Miinchen, Munich, Germany

LiepELT M. (1990): Automatisches Differenzieren, Diplomarbeit, Mathematisches
Institut, Universitat Bayreuth, Bayreuth, Germany

RALL L.B. (1981): Automatic Differentiation - Techniques and Applications, Lec-
ture Notes in Computer Science, Vol.120, Springer

RosSENBROCK H.H. (1969): An automatic method for finding the greatest and least
value of a function, Computer Journal, Vol. 3, 175-183

SCHITTKOWSKI K. (1987A): EMP: An expert system for mathematical programming,
Report, Mathematisches Institut, Universitat Bayreuth, Bayreuth, Germany

SCHITTKOWSKI K. (1987B): More Test Examples for Nonlinear Programming, Lec-
ture Notes in Economics and Mathematical Systems, Vol. 182, Springer

CHAR B.W., GEDDES K.O., GONNET G.H., MONEGAN M.B., WATT S.M. (1988):
MAPLE Reference Manual, Fifth Edition, Symbolic Computing Group, Dept. of
Computer Science, University of Waterloo, Waterloo, Canada

DOBMANN, M. (1993): FErweiterungen zum Automatischen Differenzieren, Diplom-
arbeit, Mathematisches Institut, Universitat Bayreuth, Bayreuth, Germany

FiscHER H. (1991): Special problems in automatic differentiation, in: Proceedings
of the Workshop on Automatic Differentiation: Theory, Implementation and Applica-
tion, A. Griewank, G. Corliss eds., Breckenridge, CO

46

GRIEWANK A., CorLiss G. (EDS.) (1991): Automatic Differentiation of Algo-
rithms: Theory, Implementation and Application, Proceedings of a Workshop, Breck-
enridge, CO

GRIEWANK A., JUEDES D., SRINIVASAN J. (1991): ADOL-C: A package for the
automatic differentiation of algorithms written in C/C++, Preprint MCS-P180-1190,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL

GRIEWANK A. (1989): On automatic differentiation, in: Mathematical Program-
ming: Recent Developments and Applications, ed. M. Iri, K. Tanabe, Kluwer Academic

Publishers, Boston, 83-107

HivLstroM KL.E. (1985): Users guide for JAKEF, Technical Memorandum ANL/
MCS-TM-16, Mathematics and Computer Science Division, Argonne National Labo-
ratory, Argonne, IL

Hock W., SCHITTKOWSKI K. (1981): Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer

IDNANI A. (1987): NLPSOLVER: User guide, 3i Corp., Park Ridge, NY

JUEDES D.W. (1991): A tazonomy of automatic differentiation tools, in: Proceed-
ings of the Workshop on Automatic Differentiation of Algorithms: Theory, Implemen-
tation and Application, A. Griewank, G. Corliss eds., Breckenridge, CO

Kaciwapa H., KALABA R., RosAkHOO N., SPINGARN K. (1986): Numerical
Derivatives and Nonlinear Analysis, Plenum Press, New York and London

KEDEM G. (1980): Automatic differentiation of computer programs, ACM Trans-
actions on Mathematical Software, Vol.6, No.2, 150-165

KELEVEDZHIEV E., KIROV N. (1989): Interactive optimization systems, Working
Paper, ITASA, Laxenburg, Austria

Kmm K.V. E.AL. (1984): An efficient algorithm for computing derivatives and
extremal problems, English translation, Ekonomika i matematicheskie metody, Vol.20,
No.2, 309-318

KNEPPE G. (1990): MBB-LAGRANGE: Structural optimization system for space
and aircraft structures, Report, S-PUB-0406, MBB, Munich, Germany

KREDLER C., GREINER M., KOLBL A., PURSCHE T. (1990): User’s guide for
PADMOS, Report, Institut fiir Angewandte Mathematik und Statistik, Universitat
Miinchen, Munich, Germany

47

LiepELT M. (1990): Automatisches Differenzieren, Diplomarbeit, Mathematisches
Institut, Universitat Bayreuth, Bayreuth, Germany

RALL L.B. (1981): Automatic Differentiation - Techniques and Applications, Lec-
ture Notes in Computer Science, Vol.120, Springer

ROSENBROCK H.H. (1969): An automatic method for finding the greatest and least
value of a function, Computer Journal, Vol. 3, 175-183

SCHITTKOWSKI K. (1987A): EMP: An expert system for mathematical programming,
Report, Mathematisches Institut, Universitat Bayreuth, Bayreuth, Germany

SCHITTKOWSKI K. (1987B): More Test Examples for Nonlinear Programming, Lec-
ture Notes in Economics and Mathematical Systems, Vol. 182, Springer

48

