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The paper introduces a new version of the SQP code NLPQL, which is widely used in commercial
and academic institutions to solve smooth nonlinear programming problems. The new version,
NLPQLP, is specifically tuned to run under distributed systems. Another input parameter l is

introduced for the number of parallel machines, that is the number of function calls to be executed

simultaneously. In case of l = 1, NLPQLP is identical to NLPQL. Otherwise, the line search
procedure is modified to allow parallel function calls, which can also be applied for approximating
gradients by difference formulae. The mathematical background is outlined, in particular the
modification of the line search algorithm to retain convergence under parallel systems. Numerical
results show the sensitivity of the new version with respect to the number of parallel machines and
the influence of different gradient approximations under uncertainty. The performance evaluation
is obtained by more than 300 standard test problems. It must be emphasized that the distributed
computation of function values is only simulated throughout the paper. It is up to the user to
adopt the code to a particular parallel environment.
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1 INTRODUCTION

We consider the general optimization problem, to minimize an objective function
f under nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)
gj(x) = 0 , j = 1, . . . ,me

gj(x) ≥ 0 , j = me + 1, . . . ,m
xl ≤ x ≤ xu

(1)

where x is an n-dimensional parameter vector. To facilitate the subsequent nota-
tion, we assume that upper and lower bounds xu and xl are not handled separately,
i.e., we consider the somewhat simpler formulation
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x ∈ IRn :
min f(x)
gj(x) = 0 , j = 1, . . . ,me

gj(x) ≥ 0 , j = me + 1, . . . ,m
(2)

It is assumed that all problem functions f(x) and gj(x), j = 1, . . ., m, are contin-
uously differentiable on the whole IRn. But besides of this we do not suppose any
further mathematical structure of the model functions.

Sequential quadratic programming is the standard general purpose method to
solve smooth nonlinear optimization problems, at least under the following as-
sumptions:

• The problem is not too big.
• Functions and gradients can be evaluated with sufficiently high precision.
• The problem is smooth and well-scaled.

The code NLPQL of Schittkowski29 is a Fortran implementation of a sequential
quadratic programming (SQP) algorithm. The design of the numerical algorithm
is founded on extensive comparative numerical tests of Schittkowski22,26,24, Schitt-
kowski et al.37, Hock and Schittkowski14, and on further theoretical investigations
published in 23,25,27,28. The algorithm is extended to solve also nonlinear least
squares problems efficiently, see 31 or 35, and to handle problems with very many
constraints, cf. 32. To conduct the numerical tests, a random test problem generator
is developed for a major comparative study, see 22. Two collections with more than
300 academic and real-life test problems are published in Hock and Schittkowski14
and in Schittkowski30. Fortran source codes and a test frame can be downloaded
from the home page of the author,

http://www.klaus-schittkowski.de

The test examples are part of the Cute test problem collection of Bongartz et al.4.
More than 100 test problems based on a Finite Element formulation for structural
mechanical optimization are collected for the comparative evaluation in Schitt-
kowski et al.37. A set of 950 least squares test problems solved by an extension
of the code NLPQL to retain typical features of a Gauss-Newton algorithm, is de-
scribed in 35. Also these problems can be downloaded from the home page of the
author together with an interactive user interface called EASY-FIT, see 36.

Moreover, there exist hundreds of commercial and academic applications of NLPQL,
for example

1. mechanical structural optimization, see Schittkowski, Zillober, Zotemantel37 and
Kneppe, Krammer, Winkler16,

2. data fitting and optimal control of transdermal pharmaceutical systems, see
Boderke, Schittkowski, Wolf1 or Blatt, Schittkowski3,

3. computation of optimal feed rates for tubular reactors, see Birk, Liepelt, Schitt-
kowski, and Vogel2,

4. food drying in a convection oven, see Frias, Oliveira, and Schittkowski12,
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5. optimal design of horn radiators for satellite communication, see Hartwanger,
Schittkowski, and Wolf11,

6. receptor-ligand binding studies, see Schittkowski33,

7. optimal design of surface acoustic wave filters for signal processing, see Bünner,
Schittkowski, and van de Braak5.

The general availability of parallel computers and in particular of distributed
computing in networks motivates a careful redesign of NLPQL to allow simultaneous
function evaluations. The resulting code is called NLPQLP and its mathematical
background and some numerical test results are documented in this paper.

The iterative process of an SQP algorithm is highly sequential. Proceeding from
a given initial design, new iterates are computed based only on the information
from the previous iterate. Each step requires the evaluation of all model functions
f(xk) and gj(xk), j = 1, . . ., m, and of gradients ∇f(xk) and ∇gj(xk), j ∈ Jk. xk

is the current iterate and Jk ⊂ {1, . . . ,m} a suitable active set determined by the
algorithm.

The most effective possibility to exploit a parallel system architecture occurs,
when gradients cannot be calculated analytically, but have to be approximated nu-
merically, for example by forward differences, two-sided differences, or even higher
order methods. Then we need at least n additional function calls, where n is the
number of optimization variables, or a suitable multiple of n. Assuming now that a
parallel computing environment is available with l processors, we need only one si-
multaneous function evaluation in each iteration for calculating gradients, if l ≥ n.
In the most simple case, we have to execute a given simulation program to get
f(xk + hikei) and gj(xk + hikei), j = 1, . . ., m, for all i = 1, . . ., n, on n different
processors, where hik is a small perturbation of the i-th unit vector scaled by the
actual value of the i-th coefficient of xk. Subsequently the partial derivatives are
approximated by forward differences

1
hik

(f(xk + hikei) − f(xk)) ,
1
hik

(gj(xk + hikei) − gj(xk))

for j ∈ Jk. Two-sided differences can be used, if 2n ≤ l, fourth-order differences in
case of 4n ≤ l, etc.

Another reason for an SQP code to require function evaluations, is the line search.
Based on the gradient information at an actual iterate xk ∈ IRn, a quadratic pro-
gramming (QP) problem is formulated and solved to get a search direction dk ∈ IRn.
It must be ensured that the solution of the QP is a descent direction subject to a
certain merit function. Then a sequential line search along xk + αdk is performed
by combining quadratic interpolation and a steplength reduction. The iteration is
stopped as soon as a sufficient descent property is satisfied, leading to a steplength
αk and a new iterate xk+1 = xk + αkdk. We know that the line search can be
restricted to the interval 0 < α ≤ 1, since αk = 1 is expected close to a solution, see
e.g. Spellucci38, because of the local superlinear convergence of an SQP algorithm.
Thus, the line search is always started at α1 = 1.
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To outline the new approach let us assume that functions can be computed
simultaneously on l different machines. Then l test values αi = βi−1 with β =
ε1/(l−1) are selected, i = 1, . . ., l, where ε is a guess for the machine precision. Next
we require l parallel function calls to get the corresponding model function values.
The first αi satisfying a sufficient descent property, say for i = ik, is accepted as the
new steplength for getting the subsequent iterate with αk := αik

. One has to be
sure that existing convergence results of the SQP algorithm are not violated. For
an alternative approach based on pattern search, see Hough, Kolda, and Torczon15.

The paradigm of parallelism is SPMD, i.e., Single Program Multiple Data. In
a typical situation we suppose that there is a complex application code providing
simulation data, for example by an expensive Finite Element calculation in mechan-
ical structural engineering. It is supposed that various instances of the simulation
code providing function values, are executable on a series of different machines, so-
called slaves, controlled by a master program that executes NLPQLP. By a message
passing system, for example PVM, see Geist et al.7, only very few data need to be
transferred from the master to the slaves. Typically only a set of design parameters
of length n must to be passed. On return, the master accepts new model responses
for objective function and constraints, at most m+1 double precision numbers. All
massive numerical calculations and model data, for example the stiffness matrix of
a Finite Element model, remain on the slave processors of the distributed system.

The investigations of this paper do not require a special parallel system architec-
ture. We present only a variant of an existing SQP code for nonlinear programming,
that can be embedded into an arbitrary distributed environment. A realistic im-
plementation depends highly on available hardware, operating system, or virtual
machine, and particularly on the underlying simulation package by which function
values are to be computed.

In Section 2 we outline the general mathematical structure of an SQP algorithm,
and consider some details of quasi-Newton updates and merit functions in Section
3. Sequential and parallel line search algorithms are described in Section 4. It
is shown how the traditional approach is replaced by a more restrictive one with
predetermined simultaneous function calls, nevertheless guaranteeing convergence.
Numerical results are summarized in Section 5. First it is shown, how the parallel
execution of the merit function depends on the number of available machines. Also
we compare the results with those obtained by full sequential line search. Since
parallel function evaluations are highly valuable in case of numerical gradient com-
putations, we compare also the effect of several difference formulae. Model functions
are often disturbed in practical environments, for example in case of iterative algo-
rithms required for internal auxiliary computations. Thus, we add random errors
to simulate uncertainties in function evaluations, and compare the overall efficiency
of an SQP algorithm. Implementation details of the Fortran subroutine are found
in Section 6 together with an illustrative example.
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2 SEQUENTIAL QUADRATIC PROGRAMMING METHODS

Sequential quadratic programming or SQP methods belong to the most powerful
nonlinear programming algorithms we know today for solving differentiable non-
linear programming problems of the form (1) or (2), respectively. The theoretical
background is described e.g. in Stoer39 in form of a review, or in Spellucci38 in form
of an extensive text book. From the more practical point of view, SQP methods are
also introduced in the books of Papalambros, Wilde 18 and Edgar, Himmelblau6.
Their excellent numerical performance was tested and compared with other meth-
ods in Schittkowski22, and since many years they belong to the most frequently
used algorithms to solve practical optimization problems.

The basic idea is to formulate and solve a quadratic programming subproblem in
each iteration which is obtained by linearizing the constraints and approximating
the Lagrangian function

L(x, u) := f(x) −
m∑

j=1

ujgj(x) (3)

quadratically, where x ∈ IRn is the primal variable, and where u = (u1, . . . , um)T ∈
IRm is the multiplier vector. To formulate the quadratic programming subprob-
lem, we proceed from given iterates xk ∈ IRn, an approximation of the solution,
vk ∈ IRm an approximation of the multipliers, and Bk ∈ IRn×n, an approximation
of the Hessian of the Lagrangian function. Then one has to solve the quadratic
programming problem

d ∈ IRn :
min 1

2d
TBkd + ∇f(xk)T d

∇gj(xk)T d + gj(xk) = 0 , j = 1, . . . ,me ,

∇gj(xk)T d + gj(xk) ≥ 0 , j = me + 1, . . . ,m .

(4)

Let dk be the optimal solution and uk be the corresponding multiplier vector of
this subproblem. A new iterate is obtained by(

xk+1

vk+1

)
:=

(
xk

vk

)
+ αk

(
dk

uk − vk

)
, (5)

where αk ∈ (0, 1] is a suitable steplength parameter.
The motivation for the success of SQP methods is based on the following ob-

servation: A SQP method is identical to Newton’s method to solve the
necessary optimality conditions, if Bk is the Hessian of the Lagrangian
function and if we start sufficiently close to a solution. The statement is
easily derived in case of equality constraints only, that is me = m, but holds also
for inequality restrictions. A straightforward analysis shows that if dk = 0 is an
optimal solution of (4) and uk the corresponding multiplier vector, then xk and uk

satisfy the necessary optimality conditions of (2).
Although we are able to guarantee that the matrix Bk is positive definite, it is

possible that (4) is not solvable due to inconsistent constraints. One possible remedy
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is to introduce an additional variable δ ∈ IR, leading to the modified problem

min 1
2d

TBkd + ∇f(xk)T d + σkδ
2

d ∈ IRn, ∇gj(xk)T d + (1 − δ)gj(xk)
{

=
≥

}
0, j ∈ Jk ,

δ ∈ IR : ∇gj(xk(j))T d + gj(xk) ≥ 0, j ∈ Kk

0 ≤ δ ≤ 1 .

(6)

σk is a suitable penalty parameter to force that the influence of the additionally
introduced variable δ is as small as possible, cf. Schittkowski27 for details. The
active set Jk is given by

Jk := {1, . . . ,me} ∪ {j : me < j ≤ m, gj(xk) < ε or uk
j > 0} (7)

and Kk is the complement, i.e. Kk := {1, . . . ,m}\Jk. ε is any small tolerance to
define the active constraints, and uk

j denotes the j-th coefficient of uk. Obviously,
the point d0 = 0, δ0 = 1 satisfies the linear constraints of (6) which is always
solvable. Moreover it is possible to avoid unnecessary gradient evaluations by re-
calculating only those gradients of restriction functions, that belong to the active
set, as indicated by the index ‘k(j)’.

3 MERIT FUNCTIONS AND QUASI-NEWTON UPDATES

The steplength parameter αk is required in (5) to enforce global convergence of the
SQP method, i.e., the approximation of a point satisfying the necessary Karush-
Kuhn-Tucker optimality conditions when starting from arbitrary initial values, typ-
ically a user-provided x0 ∈ IRn and v0 = 0, B0 = I. αk should satisfy at least a
sufficient decrease condition of a merit function φr(α) given by

φr(α) := ψr

((
x
v

)
+ α

(
d

u− v

))
(8)

with a suitable penalty function ψr(x, v). Possible choices of ψr are the L1-penalty
function

ψr(x, v) := f(x) +
me∑
j=1

rj |gj(x)| +
m∑

j=me+1

rj |min(0, gj(x))| , (9)

cf. Han10 and Powell19, or the augmented Lagrangian function

ψr(x, v) := f(x) −
∑
j∈J

(vjgj(x) − 1
2
rjgj(x)2) − 1

2

∑
j∈K

v2
j /rj , (10)

with J := {1, . . . ,me} ∪ {j : me < j ≤ m, gj(x) ≤ vj/rj} and K := {1, . . . ,m} \ J ,
cf. Schittkowski27. In both cases the objective function is penalized as soon as an
iterate leaves the feasible domain.
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The corresponding penalty parameters that control the degree of constraint vi-
olation, must be chosen in a suitable way to guarantee a descent direction of the
merit function. Possible choices are

r
(k)
j := max

(
|u(k)

j | , 1
2

(r(k−1)
j + |u(k)

j |)
)

,

see Powell19 for the L1-merit function (9), or

r
(k)
j := max

(2m(u(k)
j − v

(k)
j )2

(1 − δk) dT
k Bkdk

, r
(k−1)
j

)
(11)

for the augmented Lagrangian function (10), see Schittkowski27. Here δk is the ad-
ditionally introduced variable to avoid inconsistent quadratic programming prob-
lems, see (6). For both merit functions we get the following descent property that
is essential to prove convergence.

φ′
rk

(0) = 
ψrk
(xk, vk)T

(
dk

uk − vk

)
< 0 . (12)

For the proof see Han10 or Schittkowski27.
Finally one has to approximate the Hessian matrix of the Lagrangian function

in a suitable way. To avoid calculation of second derivatives and to obtain a final
superlinear convergence rate, the standard approach is to update Bk by the BFGS
quasi-Newton formula, cf. Powell20 or Stoer39. The calculation of any new matrix
Bk+1 depends only on Bk and two vectors

qk := ∇xL(xk+1, uk) −∇xL(xk, uk) ,

wk := xk+1 − xk ,
(13)

i.e.,
Bk+1 := Π(Bk, qk, wk) , (14)

where

Π(B, q, w) := B +
qqT

qTw
− BwwTB

wTBw
. (15)

The above formula yields a positive definite matrix Bk+1 provided that Bk is pos-
itive definite and qT

k wk > 0. A simple modification of Powell19 guarantees positive
definite matrices even if the latter condition is violated.

There remains the question whether the convergence of an SQP method can be
proved in a mathematically rigorous way. In fact, there exist numerous theoretical
convergence results in the literature, see e.g. Spellucci38. We want to give here only
an impression about the type of these statements, and repeat two results that have
been stated in the early days of the SQP methods.

In the first case, we consider the global convergence behaviour, i.e., the question,
whether the SQP methods converges when starting from an arbitrary initial point.
Suppose that the augmented Lagrangian merit function (8) is implemented and
that the primal and dual variables are updated in the form (10).
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Theorem 3.1 Let {(xk, vk)} be a bounded iteration sequence of the SQP algorithm
with a bounded sequence of quasi-Newton matrices {Bk} and assume that there are
positive constants γ and δ̄ < 1 with

(i) dT
k Bkdk ≥ γ dT

k dk for all k and a γ > 0 ,

(ii) δk ≤ δ for all k ,

(iii) σk ≥ ‖A(xk) vk‖2

γ(1 − δ)2
for all k .

Then there exists an accumulation point of {(xk, vk)} satisfying the Karush-Kuhn-
Tucker conditions for (2).

Assumption (i) is very well known from unconstrained optimization. It says
that the angles between the steepest descent directions and the search directions
obtained from the quadratic programming subproblems, must be bounded away
from π/2. Assumptions (ii) and (iii) are a bit more technical and serve to control
the additionally introduced variable δ for preventing inconsistency.

The proof of the theorem is found in Schittkowski27. The statement is quite weak,
but without any further information about second derivatives, we cannot guarantee
that the approximated point is indeed a local minimizer.

To investigate now the local convergence speed, we assume that we start from an
initial point x0 sufficiently close to an optimal solution. General assumptions for
local convergence analysis are

• z� = (x�, u�) is a strong local minimizer of (2).

• me = m, i.e., we know all active constraints,

• f , g1, . . ., gm are twice continuously differentiable,

• for zk := (xk, vk) we have limk→∞ zk = z�,

• the gradients 
g1(x�), . . ., 
gm(x�) are linearly independent, i.e., the constraint
qualification is satisfied,

• dTBkd ≥ γ dT d for all d ∈ Rn with A(xk)T d = 0, i.e., the eigenvalues of the
Hessian approximations are bounded away from zero.

Powell20 proved the following theorem for the BFGS update formula.

Theorem 3.2 Assume that

(i) 
2
xL(x�, u�) is positive definite,

(ii) αk = 1 for all k.

Then the sequence {xk} converges R-superlinearly, i.e.,

lim
k→∞

‖xk+1 − x�‖1/k = 0 .
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The R-superlinear convergence speed is somewhat weaker than the Q-superlinear
convergence rate defined below. It was Han9 who proved the statement

lim
k→∞

‖zk+1 − z�‖
‖zk − z�‖ = 0 .

for the so-called DFP update formula, a slightly different quasi-Newton method.
In this case, we get a sequence βk tending to zero with

‖zk+1 − z�‖ ≤ βk ‖zk − z�‖

4 STEPLENGTH CALCULATION

Let us consider in more detail, how a steplength αk is actually calculated. First we
select a suitable merit function, in our case the augmented Lagrangian (10), that
defines a scalar function φr(α). For obvious reasons, a full minimization along α is
not possible. The idea is to get a sufficient decrease for example measured by the
so-called Goldstein condition

φr(0) + αµ2φ
′
r(0) ≤ φr(α) ≤ φr(0) + αµ1φ

′
r(0) (16)

or the Armijo condition

φr(σβi) ≤ φr(0) + σβiµφ′
r(0) , (17)

see for example Ortega and Rheinboldt17. The constants are from the ranges 0 <
µ1 ≤ 0.5 < µ2 < 1, 0 < µ < 0.5, 0 < β < 1, and 0 < σ ≤ 1. In the first
case, we accept any α in the range given by (16), whereas the second condition is
constructive. We start with i = 0 and increase i until (17) is satisfied for the first
time, say at ik. Then the desired steplength is αk = σβik . Both approaches are
feasible because of the descent property φ′

r(0) < 0, see (12).
All line search algorithms have to satisfy two requirements, which are somewhat

contradicting:

1. The decrease of the merit function must be sufficiently large, to accelerate con-
vergence.

2. The steplength must not become too small to avoid convergence against a non-
stationary point.

The implementation of a line search algorithm is a critical issue when implement-
ing a nonlinear programming algorithm, and has significant effect on the overall
efficiency of the resulting code. On the one hand we need a line search to stabilize
the algorithm, on the other hand it is not advisable to waste too many function
calls. Moreover, the behavior of the merit function becomes irregular in case of con-
strained optimization problems because of very steep slopes at the border caused
by the penalty terms. Even the implementation is more complex than shown above,
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if linear constraints and bounds of the variables are to be satisfied during the line
search.

Fortunately, SQP methods are quite robust and accept the steplength one in the
neighborhood of a solution. Typically the test parameter µ for the Armijo-type
sufficient descent property (17) is very small, for example µ = 0.0001 in the present
implementation of NLPQL. Nevertheless the choice of the reduction parameter β
must be adopted to the actual slope of the merit function. If β is too small, the line
search terminates very fast, but on the other hand the resulting stepsizes are usually
too small leading to a higher number of outer iterations. On the other hand, a larger
value close to one requires too many function calls during the line search. Thus, we
need some kind of compromise, which is obtained by applying first a polynomial
interpolation, typically a quadratic one, and use (16) or (17) only as a stopping
criterion. Since φr(0), φ′

r(0), and φr(αi) are given, αi the actual iterate of the line
search procedure, we get easily the minimizer of the quadratic interpolation. We
accept then the maximum of this value or the Armijo parameter as a new iterate,
as shown by the subsequent code fragment implemented in NLPQL.

Algorithm 4.1 Let β, µ with 0 < β < 1, 0 < µ < 0.5 be given.

Start: α0 := 1

For i = 0, 1, 2, . . . do:
1) If φr(αi) < φr(0) + µ αi φ

′
r(0), then stop.

2) Compute ᾱi :=
0.5 α2

i φ′
r(0)

αiφ′
r(0) − φr(αi) + φr(0)

.

3) Let αi+1 := max(β αi, ᾱi).

Corresponding convergence results are found in Schittkowski27. ᾱi is the mini-
mizer of the quadratic interpolation and we use the Armijo descent property for
checking termination. Step 3) is required to avoid irregular values, since the mini-
mizer of the quadratic interpolation could be outside of the feasible domain (0, 1].
The search algorithm is implemented in NLPQL together with additional safe-
guards, for example to prevent violation of bounds. Algorithm 4.1 assumes that
φr(1) is known before calling the procedure, i.e., the corresponding function call is
made in the calling program. We have to stop the algorithm, if sufficient descent
is not observed after a certain number of iterations, say 10. If the tested stepsizes
fall below machine precision or the accuracy by which model function values are
computed, the merit function cannot decrease further.

Now we come back to the question, how the sequential line search algorithm can
be modified to work under a parallel computing environment. Proceeding from an
existing implementation as outlined above, the answer is quite simple. To outline
the new approach, let us assume that functions can be computed simultaneously
on l different machines. Then l test values αi = βi with β = ε1/(l−1) are selected,
i = 0, . . ., l − 1, where ε is a guess for the machine precision. Next we order l
parallel function calls to get f(xk + αidk) and gj(xk + αidk), j = 1, . . ., m, for
i = 0, . . ., l−1. The first αi satisfying the sufficient descent property (17) at i = ik,
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is accepted as the steplength αk := αik
for getting the subsequent iterate xk+1.

The proposed parallel line search will work efficiently, if the number of parallel
machines l is sufficiently large, and works as follows.

Algorithm 4.2 Let β, µ with 0 < β < 1, 0 < µ < 0.5 be given.

Start: For αi = βi compute φr(αi) for i = 0, . . ., l − 1.

For i = 0, 1, 2, . . . do:
If φr(αi) < φr(0) + µ αi φ

′
r(0), then stop.

To precalculate l candidates in parallel at log-distributed points between a small
tolerance α = τ and α = 1, 0 < τ << 1, we propose β = τ1/(l−1).

5 NUMERICAL RESULTS

Our numerical tests use all 306 academic and real-life test problems published in
Hock and Schittkowski14 and in Schittkowski30. The Fortran source codes can be
downloaded from the home page of the author

http://www.klaus-schittkowski.de

together with a user’s guide, see Schittkowski34. The distribution of the dimension
parameter n, the number of variables, is shown in Figure 1. We see, for example,
that about 270 of 306 test problems have not more than 10 variables. In a similar
way, the distribution of the number of constraints is shown in Figure 2.

Since analytical derivatives are not available for all problems, we approximate
them numerically. The test examples are provided with exact solutions, either
known from analytical solutions or from the best numerical data found so far. The
Fortran code is compiled by the Compaq Visual Fortran Optimizing Compiler,
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Version 6.5, under Windows 2000, and executed on a Pentium III processor with
750 MHz. Since the calculation times are very short, about 10 sec for solving all 306
test problems, we count only function and gradient evaluations. This is a realistic
assumption, since for the practical applications we have in mind, calculation times
for evaluating model functions dominate and the numerical efforts within NLPQLP
are negligible.

First we need a criterion to decide, whether the result of a test run is considered
as a successful return or not. Let ε > 0 be a tolerance for defining the relative
termination accuracy, xk the final iterate of a test run, and x� the supposed exact
solution as reported by the two test problem collections. Then we call the output
of an execution of NLPQLP a successful return, if the relative error in objective
function is less than ε and if the sum of all constraint violations less than ε2, i.e., if

f(xk) − f(x�) < ε|f(x�)| , if f(x�) <> 0 ,

or
f(xk) < ε , if f(x�) = 0 ,

and

r(xk) :=
me∑
j=1

|gj(xk)| +
m∑

j=me+1

|min(0, gj(xk))| < ε2 .

We take into account that NLPQLP returns a solution with a better function
value than the known one, subject to the error tolerance of the allowed constraint
violation. However there is still the possibility that NLPQLP terminates at a local
solution different from the one known in advance. Thus, we call a test run a
successful one, if NLPQLP terminates with error message IFAIL=0, and if

f(xk) − f(x�) ≥ ε|f(x�)| , if f(x�) <> 0 ,
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L SUCC NF NIT
1 306 41 25
3 206 709 179
4 251 624 126
5 282 470 80
6 291 339 50
7 292 323 42
8 297 299 35
9 299 305 32

10 300 300 29
12 301 346 28
15 297 394 26
20 299 519 26
50 300 1,280 26

TABLE 1: Performance Results for Parallel Line Search

or
f(xk) ≥ ε , if f(x�) = 0 ,

and
r(xk) < ε2 .

For our numerical tests, we use ε = 0.01, i.e., we require a final accuracy of
one per cent. NLPQLP is executed with termination accuracy ACC=10−8, and
MAXIT=500. Termination with IFAIL=0 indicates that all internal stopping cri-
teria are satisfied. Gradients are approximated by a fourth-order difference formula

∂

∂xi
f(x) ≈ 1

4!ηi

(
2f(x−2ηiei)−16f(x−ηiei)+16f(x+ηiei)−2f(x+2ηiei)

)
, (18)

where ηi = η max(10−5, |xi|), η = 10−7, ei the i-th unit vector, and i = 1, . . ., n.
In a similar way, derivatives of the constraint functions are computed.

First we investigate the question, how parallel line searches influence the overall
performance. Table 1 shows the number of successful test runs SUCC, the aver-
age number of function calls NF, and the average number of iterations NIT, for
increasing number of simulated parallel calls of model functions denoted by L. To
get NF, we count each single function call, also in the case L>1. However, function
evaluations needed for gradient approximations, are not counted. Their average
number is 4×NIT.

L=1 corresponds to the sequential case, when Algorithm 4.1 is applied for the
line search, consisting of a quadratic interpolation combined with an Armijo-type
bisection strategy. In this case, all problems can be solved successfully. Since we
need at least one function evaluation for the subsequent iterate, we observe that
the average number of additional function evaluations needed for the line search, is
less than one.
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In all other cases, L>1 simultaneous function evaluations are made according to
Algorithm 4.2. Thus, the total number of function calls NF is quite big in Table 1.
If, however, the number of parallel machines L is sufficiently large in a practical
situation, we need only one simultaneous function evaluation in each step of the
SQP algorithm. To get a reliable and robust line search, we need at least 5 parallel
processors. No significant improvements are observed, if we have more than 10
parallel function evaluations.

The most promising possibility to exploit a parallel system architecture occurs,
when gradients cannot be calculated analytically, but have to be approximated nu-
merically, for example by forward differences, two-sided differences, or even higher
order methods. Then we need at least n additional function calls, where n is the
number of optimization variables, or a suitable multiple of n.

For our numerical tests, we implement three different approximation routines for
derivatives based on standard difference formulae of increasing order:

1. Forward differences:

∂

∂xi
f(x) ≈ 1

ηi

(
f(x + ηiei) − f(x)

)

2. Two-sided differences:

∂

∂xi
f(x) ≈ 1

2ηi

(
f(x + ηiei) − f(x− ηiei

)

3. Fourth-order formula:

∂

∂xi
f(x) ≈ 1

4!ηi

(
2f(x− 2ηiei) − 16f(x− ηiei) + 16f(x + ηiei) − 2f(x + 2ηiei)

)

In the above formulae, i = 1, . . ., n is the index of the variables for which a
partial derivative is to be computed, x = (x1, . . . , xn)T the argument, ei the i-the
unit vector, and ηi = η max(10−5, |xi|) the relative perturbation. In the same way,
derivatives for constraints are approximated.

Table 2 shows the corresponding results for the different procedures under con-
sideration, and for increasing random perturbations (ERR). We report the number
of successful runs (SUCC) only, since the average number of iterations is more or
less the same in all cases. The tolerance for approximating gradients, η, is set
to the square root of ERR, and the termination tolerance of NLPQLP is set to
ACC=0.1×ERR.

6 IMPLEMENTATION DETAILS

NLPQLP is implemented in form of a Fortran subroutine to solve nonlinear pro-
grams of the form (1). The quadratic programming problem is solved by the code
QL, an implementation of the primal-dual method of Goldfarb and Idnani8 going
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ERR 1 2 3
0 298 298 306
10−12 292 297 297
10−10 267 284 277
10−8 236 254 255
10−6 207 231 221
10−4 137 175 171

TABLE 2: Successful Test Runs for Different Gradient Approximations

back to Powell21. Model functions and gradients are called by reverse communica-
tion. The code is executed with the calling sequence

CALL NLPQLP(L,M,ME,MMAX,N,NMAX,MNN2,X,F,G,DF,DG,U,XL,
/ XU,C,D,ACC,ACCQP,STPMIN,MAXFUN,MAXIT,IPRINT,
/ MODE,IOUT,IFAIL,WA,LWA,KWA,LKWA,ACT,LACT)

Most of the parameters are only needed to pass variable, function, gradient and
multiplier values. Moreover, real, integer, and logical working arrays are required.
NLPQLP is a very robust implementation of a sequential quadratic programming
algorithm and requires very few user-provided parameters besides of the organiza-
tional ones. Only two input parameters are essential,

MAXIT : maximum number of iterations,
ACC : final termination accuracy.

Any reasonably large number of iterations MAXIT can be used, since we suppose
that NLPQLP is executed to solve small-scale, but eventually highly nonlinear
optimization problems. However, if function and gradient evaluations provided
by the simulation code, are expensive, it is recommended to perform only a few
iterations and to perform a restart if the final iterate is not acceptable.

Several termination criteria are implemented in NLPQLP to prevent scaling ef-
fects as much as possible, and to stop the algorithm as soon as the desired tolerance
ACC is reached. For more details, see Schittkowski29. If gradients are evaluated
within machine precision, a relatively small parameter between 1.0E-8 to 1.0E-14
is acceptable. Otherwise, ACC should not be smaller than the stepsize applied
for a numerical gradient approximation by forward differences, or the accuracy of
objective function and constraint evaluation.

All other parameters, solution tolerances, or options usually required by a non-
linear programming code are set internally. The parameter MODE specifies the
desired version of NLPQLP. For MODE=0, initial guesses for multipliers and the
Hessian approximation are set to the zero vector and the unit matrix, respectively.
MODE=1 indicates that the user wants to provide an initial guesses and to store
them in U and C, respectively. The tolerance ACCQP is needed for the QP solver
to perform several tests, for example whether optimality conditions are satisfied or
whether a number is considered as zero or not. If ACCQP is zero, the machine
precision is computed by NLPQLP and subsequently multiplied by 104. The min-
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imum steplength STPMIN is used in case of L>1. Recommended is any value in
the order of the accuracy by which functions are computed. The value is needed
to compute a steplength reduction factor by STPMIN**(1/(L-1)). If STPMIN=0,
then STPMIN=ACC is used.

The following termination messages are displayed by NLPQLP:
IFAIL = 0 : Optimality conditions are satisfied.
IFAIL = 1 : The algorithm terminates after MAXIT iterations.
IFAIL = 2 : The algorithm computes an uphill search direction.
IFAIL = 3 : Underflow occurs when determining a new approximation

of the Hessian matrix of the Lagrangian function.
IFAIL = 4 : The line search is not terminated successfully.
IFAIL = 7 : The search direction is close to zero, but the current iterate

is still infeasible.
IFAIL>10 : The quadratic programming code terminates with an error

message IFQL>0 and IFAIL is set to IFAIL=IFQL+10.

Some of the termination reasons depend on the accuracy used for approximat-
ing gradients. If we assume that all functions and gradients are computed within
machine precision and that the implementation is correct, there remain only the
following possibilities that could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm
plays around with round-off errors without being able to improve the solution.
Especially the Hessian approximation of the Lagrangian function becomes un-
stable in this case. A straightforward remedy is to restart the optimization cycle
again with a larger stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty. There
is no way to find out, whether a general nonlinear and non-convex set possesses a
feasible point or not. Thus, the nonlinear programming algorithms will proceed
until running in any of the mentioned error situations. In this case, there the
correctness of the model must be checked very carefully.

3. Constraints are feasible, but some of them there are degenerate, for example if
some of the constraints are redundant. One should know that SQP algorithms
require satisfaction of the so-called constraint qualification, i.e., that gradients
of active constraints are linearly independent at each iterate and in a neighbor-
hood of the optimal solution. In this situation, it is recommended to check the
formulation of the model.

However some of the error situations do also occur, if because of wrong or non-
accurate gradients, the quadratic programming subproblem does not yield a descent
direction for the underlying merit function. In this case, one should try to improve
the accuracy of function evaluations, scale the model functions in a proper way, or
start the algorithm from other initial values.

The user has to provide functions and gradients in the same program, which
executes NLPQLP, according to the following rules:
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1. Choose starting values for the variables to be optimized, and store them in the
first column of X.

2. Compute objective and all constraint function values, store them in F(1) and the
first column of G, respectively.

3. Compute gradients of objective function and all constraints, and store them in
DF and DG, respectively. The J-th row of DG contains the gradient of the J-th
constraint, J=1,...,M.

4. Set IFAIL=0 and execute NLPQLP.

5. If NLPQLP returns with IFAIL=-1, compute objective function and constraint
values for all variables found in the first L columns of X, store them in F (first L
positions) and G (first L columns), and call NLPQLP again.

6. If NLPQLP terminates with IFAIL=-2, compute gradient values with respect to
the variables stored in the first column of X, and store them in DF and DG. Only
derivatives for active constraints, ACT(J)=.TRUE., need to be computed. Then
call NLPQLP again.

7. If NLPQLP terminates with IFAIL=0, the internal stopping criteria are satisfied.
In case of IFAIL>0, an error occurred.

The above strategy for providing function and gradient values, is called reverse
communication. If analytical derivatives are not available, simultaneous function
calls can be used for gradient approximations, for example by forward differences
(2N>L), two-sided differences (4N>L≥2N), or even higher order formulae (L≥4N).

To give an example how to organize the code, we consider Rosenbrock’s post
office problem, i.e., test problem TP37 of Hock and Schittkowski14.

x1, x2 ∈ IR :

min−x1x2x3

x1 + 2x2 + 2x3 ≥ 0
72 − x1 − 2x2 − 2x3 ≥ 0
0 ≤ x1 ≤ 100
0 ≤ x2 ≤ 100

(19)

The Fortran source code for executing NLPQLP is listed below. Gradients are
approximated by forward differences. The function block inserted in the main
program can be replaced by a subroutine call. Also the gradient evaluation is easily
exchanged by an analytical one or higher order derivatives.

IMPLICIT NONE
INTEGER NMAX,MMAX,LMAX,MNN2X,LWA,LKWA,LACT
PARAMETER (NMAX=4,MMAX=2,LMAX=10)
PARAMETER (MNN2X = MMAX+NMAX+NMAX+2,
/ LWA=3*NMAX*NMAX/2+6*MMAX+28*NMAX+100,
/ LKWA=MMAX+2*NMAX+20,LACT=2*MMAX+15)
INTEGER KWA(LKWA),N,ME,M,L,MNN2,MAXIT,MAXFUN,IPRINT,
/ IOUT,MODE,IFAIL,I,J,K,NFUNC
DOUBLE PRECISION X(NMAX,LMAX),F(LMAX),G(MMAX,LMAX),DF(NMAX),
/ DG(MMAX,NMAX),U(MNN2X),XL(NMAX),XU(NMAX),C(NMAX,NMAX),
/ D(NMAX),WA(LWA),ACC,ACCQP,STPMIN,EPS,EPSREL,FBCK,
/ GBCK(MMAX),XBCK
LOGICAL ACT(LACT)
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IOUT=6
ACC=1.0D-9
ACCQP=1.0D-11
STPMIN=1.0E-10
EPS=1.0D-7
MAXIT=100
MAXFUN=10
IPRINT=2
N=3
L=N
M=2
ME=0
MNN2=M+N+N+2
DO I=1,N

DO K=1,L
X(I,K)=1.0D+1

ENDDO
XL(I)=0.0
XU(I)=1.0D+2

ENDDO
MODE=0
IFAIL=0
NFUNC=0

1 CONTINUE
C============================================================
C This is the main block to compute all function values
C simultaneously, assuming that there are L nodes.
C The block is executed either for computing a steplength
C or for approximating gradients by forward differences.

DO K=1,L
F(K)=-X(1,K)*X(2,K)*X(3,K)
G(1,K)=X(1,K) + 2.0*X(2,K) + 2.0*X(3,K)
G(2,K)=72.0 - X(1,K) - 2.0*X(2,K) - 2.0*X(3,K)

ENDDO
C============================================================

NFUNC=NFUNC+1
IF (IFAIL.EQ.-1) GOTO 4
IF (NFUNC.GT.1) GOTO 3

2 CONTINUE
FBCK=F(1)
DO J=1,M

GBCK(J)=G(J,1)
ENDDO
XBCK=X(1,1)
DO I=1,N

EPSREL=EPS*DMAX1(1.0D0,DABS(X(I,1)))
DO K=2,L

X(I,K)=X(I,1)
ENDDO
X(I,I)=X(I,1)+EPSREL

ENDDO
GOTO 1

3 CONTINUE
X(1,1)=XBCK
DO I=1,N

EPSREL=EPS*DMAX1(1.0D0,DABS(X(I,1)))
DF(I)=(F(I)-FBCK)/EPSREL
DO J=1,M

DG(J,I)=(G(J,I)-GBCK(J))/EPSREL
ENDDO

ENDDO
F(1)=FBCK
DO J=1,M

G(J,1)=GBCK(J)
ENDDO

4 CALL NLPQLP(L,M,ME,MMAX,N,NMAX,MNN2,X,F,G,DF,DG,U,XL,XU,
/ C,D,ACC,ACCQP,STPMIN,MAXFUN,MAXIT,IPRINT,MODE,IOUT,
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/ IFAIL,WA,LWA,KWA,LKWA,ACT,LACT)
IF (IFAIL.EQ.-1) GOTO 1
IF (IFAIL.EQ.-2) GOTO 2
WRITE(IOUT,1000) NFUNC

1000 FORMAT(’ *** Number of function calls: ’,I3)
STOP
END

When applying simultaneous function evaluations with L=N, only 20 function
calls and 10 iterations are required to get a solution within termination accuracy
10−10. A call with L = 1 would stop after 9 iterations. The following output should
appear on screen:

--------------------------------------------------------------------
START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM
--------------------------------------------------------------------

Parameters:
MODE = 0
ACC = 0.1000D-08
MAXFUN = 3
MAXIT = 100
IPRINT = 2

Output in the following order:
IT - iteration number
F - objective function value
SCV - sum of constraint violations
NA - number of active constraints
I - number of line search iterations
ALPHA - steplength parameter
DELTA - additional variable to prevent inconsistency
KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT
--------------------------------------------------------------------

1 -0.10000000D+04 0.00D+00 2 0 0.00D+00 0.00D+00 0.46D+04
2 -0.10003444D+04 0.00D+00 1 2 0.10D-03 0.00D+00 0.38D+04
3 -0.33594686D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.24D+02
4 -0.33818566D+04 0.16D-09 1 1 0.10D+01 0.00D+00 0.93D+02
5 -0.34442871D+04 0.51D-08 1 1 0.10D+01 0.00D+00 0.26D+03
6 -0.34443130D+04 0.51D-08 1 2 0.10D-03 0.00D+00 0.25D+02
7 -0.34558588D+04 0.19D-08 1 1 0.10D+01 0.00D+00 0.30D+00
8 -0.34559997D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.61D-03
9 -0.34560000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.12D-07
10 -0.34560000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.13D-10

--- Final Convergence Analysis ---

Objective function value: F(X) = -0.34560000D+04
Approximation of solution: X =

0.24000000D+02 0.12000000D+02 0.12000000D+02
Approximation of multipliers: U =

0.00000000D+00 0.14400000D+03 0.00000000D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

Constraint values: G(X) =
0.72000000D+02 0.35527137D-13

Distance from lower bound: XL-X =
-0.24000000D+02 -0.12000000D+02 -0.12000000D+02

Distance from upper bound: XU-X =
0.76000000D+02 0.88000000D+02 0.88000000D+02

Number of function calls: NFUNC = 10
Number of gradient calls: NGRAD = 10
Number of calls of QP solver: NQL = 10
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*** Number of function calls: 20

In case of L=1, NLPQLP is identical to NLPQL and stops after 9 iterations. The
corresponding function block of the main program is much simpler now,

C============================================================
C This is the main block to compute all function values.
C The block is executed either for computing a steplength
C or for approximating gradients by a difference formula.

F(1)=-X(1)*X(2)*X(3)
G(1)=X(1) + 2.0*X(2) + 2.0*X(3)
G(2)=72.0 - X(1) - 2.0*X(2) - 2.0*X(3)

C============================================================

7 CONCLUSIONS

We present a modification of an SQP algorithm designed for execution under a
parallel computing environment (SPMD). Under the assumption that objective
functions and constraints are executed on different machines, a parallel line search
procedure is proposed. Thus, the SQP algorithm is executable under a distributed
system, where parallel function calls are exploited for line search and gradient
approximations.

The approach is outlined, some implementation details are presented, and nu-
merical tests are performed. It is shown that there are no significant performance
differences between sequential and parallel line searches, if the number of parallel
processors is sufficiently large. In both cases, about the same number of iterations
is performed, and the number of successfully solved problems is also comparable.
The test results are obtained by a collection of 306 academic and real-life examples.

By a series of further tests, it is shown how the code behaves for different gradient
approximations under additional random noise added to the model functions, to
simulate realistic situations arising in practical applications. If a sufficiently large
number of parallel processors is available, it is recommended to apply higher order
approximation formulae instead of forward differences.
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