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Abstract

Computer aided design optimization of corrugated horns became a pow-
erful tool to reduce development costs on the one hand and to improve per-
formance of space antennas on the other. In this paper the physical model
is outlined, based on Maxwell’s equations, and it is shown, how a complete
numerical simulation of a circular corrugated horn can be achieved, assuming
that the interior geometry of the horn is known. In order to compute the elec-
tromagnetic properties of a horn, the so-called scattering matrix is assembled.
This matrix is needed to relate mode amplitudes of reflected and transmitted
waves in horn sections with different diameters. Envelope functions, deter-
mined by a few geometric design parameters, are used to describe the inner
geometry of a horn. These parameters are applied to formulate a least squares
optimization problem. As a starting point, an amplitude spectrum in the aper-
ture has to be determined which radiates a given far field. The differences of
those amplitudes and the amplitudes predicted by the model are to become
as small as possible by adapting the design variables. Moreover, the return

loss is to be minimized. The resulting least squares optimization problem can
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be solved by a standard sequential qudratic programming (SQP) code after a
suitable transformation into a nonlinear programming problem, by which typ-
ical features of Gauss-Newton methods are retained. Some numerical results
are included to show the successfull application of the introduced advance to

design a circular corrugated horn which radiates a given far field.

Keywords: Antenna design; corrugated horns; wave equation; least squares opti-

mization

1 Introduction

Corrugated horns are frequently used as reflector feed sources for large space anten-
nas, e.g. for INTELSAT satellites, see Wolf et al. [33].

The goal is, to achieve a given spatial energy distribution of the radio frequency
(RF) waves, called the radiation or directional characteristic. The transmission
quality of the information, carried by the RF signals, is strongly determined by the
directional characteristic of the feeding horn, i.e. it’s geometric structure.

Today, the experimental design of corrugated horns, based on a trial-and-error
approach, is replaced by a computer aided design, where the dynamic system is
modeled completely in a mathematically rigorous way, see Kithn and Hombach [15]
for horns with ring-loaded radial slots, or Coccioli et al. [3], Clarricoats, Olver [2]
and Olver et al. [24], [23] for alternative horn types.

Another drastic improvement in the design process was achieved by applying
nonlinear programming techniques. Optimization variables describe completely the
interior horn geometry, e.g. length, aperture diameter, wave guide interface, mass,
slot width of corrugations, wall thickness, etc. They are iterated by an optimization
algorithm with the intention to minimize return loss, cross-polar peak over a specified
field of view, the copolar edge tapering at a specified pattern angle, or some other
objectives, cf. e.g. Wolf et al. [33], Shee and Smith [29], or the paper of Gentili et
al. [8] with some additional information about software. Manufacturing and physical

constraints must be taken into account.
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The mathematical model is based on Maxwell’s equations for electric and mag-
netic fields, see e.g. Harrington [11]. Because of additional assumptions, e.g., ho-
mogeneous and isotropic media, rotational symmetry, and ideal conductivity, it is
possible to solve the wave equation analytically and to evaluate electric and magnetic
fields in a wave guide by their eigenmodes forming a complete orthogonal system.

However, the model becomes more complex because of the continuous transition
between two neighbouring wave guides with different cross sectional areas. The
relationship between reflected and transmitted amplitudes in both wave guides is
described by a so-called scattering matrix, which has to be computed separately for
each horn module conjunction. By successive matrix multiplications, the scattering
matrix for the complete transition of the amplitudes at the horn entry and the
aperture can be evaluated.

Once the scattering matrix is computed, the sum of the squared differences be-
tween the actually computed wave amplitudes and the required ones is evaluated as
for the objective function to be minimized. Design parameters, needed for describ-
ing the interior horn geometry, are the optimization variables to be adapted in an
iterative way.

Least squares problems are solved iteratively by Gauss-Newton and related al-
gorithms, to exploit the special mathematical structure as much as possible and to
get efficient and reliable methods, see e.g. Bjorck [1] or Dennis [5].

Because of the highly complex computations required for creating the scattering
matrix, the number of iterations must be as low as possible. Since the applied
numerical methods require first derivatives, it is necessary to approximate them
numerically by a forward difference formula, an additional burden for the numerical
complexity of the described approach.

One possibility to solve a least squares problem is, to transform it into a general
constrained nonlinear programming problem by introducing additional variables and
constraints, see Schittkowski [28], and to solve the modified optimization problem
by a sequential quadratic programming (SQP) code, e.g., by NLPQL of Schitt-

kowski [27]. It can be shown that typical features of a Gauss-Newton method are
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retained and that the additional variables and constraints do not increase numerical
complexity. By combining the evaluation program for the scattering matrix and
the least squares optimization code, a powerful tool to solve the underlying design
problem is obtained.

Section 2 contains a brief outline of the underlying physical model equations,
i.e. Maxwell’s equations and the resulting wave equations. The interior geometry
of a circular corrugated horn is described in Section 3, which is needed to formu-
late the design parameters of our model. The essential time consuming part of the
numerical model evaluation is the computation of the scattering matrix, by which
amplitudes of aperture modes and wave guide modes can be computed from the
given excitation. Corresponding formulas, obtained from continuous transmission
conditions, are found in Section 4. In Section 5 the least squares optimization prob-
lem is formulated and some numerical details giving insight into the computational
procedure, are presented. The iterative solution of least squares problems is based
on the Gauss-Newton method, which is described in Section 6. Moreover it is shown
how the least squares problem is transformed into a general nonlinear programming
problem to be solved by a standard SQP algorithm. Finally numerical results are

presented, obtained for an existing satellite horn, to validate the described method.

2 Physical Model Equations

In the following, a brief outline of the physical equations is given that are used to
model the electromagnetic field of horns. For more details see Jackson [13], Mittra
and Lee [21] or Zuhrt [34]. It is assumed, that a circular wave guide with constant
diameter is given.

The electromagnetic field theory is based on Maxwell’s equations, i.e., four dif-
ferential equations relating the electrical field E, the magnetic field H, the electrical
displacement D, and the magnetic induction B to electrical charge density p and

current density J, see e.g. Collin [4] or Silver [30]. In a general form these equations
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are
VxH = J+4D,
VxE = -2B,
(1)
vV-B =0,
vV-D = p
with the material conditions
D = e, F,
(2)
B = /‘LOIU’TH )

with €, the dielectric constant, €., the relative dielectric constant, po the perme-
ability and p,, the relative permeability.

Under some basic assumptions, e.g., homogenous and isotropic media, Maxwell’s
equations can be transformed into an equivalent system of two coupled equations.
They have the form of a wave equation , i.e.,

ViU — (;28—2\1/ = —f(x,t)
o ’

with displacement f(z,t) enforcing the wave, and wave velocity c¢. x is the space
variable, and W is to be replaced respectively either by E or H.

For circular horns with rotational symmetry, the usage of cylindrical coordinates
(p, ¢, z) is advantageous, especially since only waves propagating in z direction do

occur. Thus the scalar wave equation in cylindrical coordinates is given by

10 ov 1 0?0 9%V

—— |p=— )+ s+ == +ET =0 . 3
pOp <p3p>+p23¢>2+322+ 3)
The constant £ is known as the propagation constant, which is related to the wave
length A by k£ = 27”

By separation of variables the general solution

o= o () o ()

[03 cos V@ + ¢4 sin 1/(/)] [05@—“%2 + 666ikzz:| ’ (4
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is obtained with cylindrical Bessel and Neumann functions .J, and N,, v = 1,...,6,and
some arbitrary coefficients ¢;, j = 1,...,6, see e.g. Collin [4], Waldron [32] or
Unger [31] for more details.

Further assuming that the surface of the wave guide has ideal conductivity, Diri-
clet boundary conditions ¥ = 0 for ¥ = E and Neumann boundary conditions
g—‘;’ = 0 for ¥ = H (n expressing the normal vector to the surface) at the surface,
yield the eigenmodes or eigenwaves for the circular wave guide. For the numerical
analysis it is essential to understand that the eigenmodes of the wave guide form a
complete orthogonal system. As a consequence any electromagnetic field distribu-
tion in a circular wave guide can be expanded into a infinite series of eigenfunctions,
see Unger [31], Waldron [32]. Therefore, the electromagnetic field in the wave guide
is completely described by the amplitudes of the modes.

For the discussed problem only the transversal eigenfunctions of the wave guides

need to be considered. The eigenfunctions of the circular wave guide are given in

the form
2 — 60 Jul@,,L) [sinng
TT{; = r 2 ) (5)
(2, —n*)m ‘J ‘ cos ng
2— 5n Jn n e i
Tf; _ 0 (Tnp?) {Smnd)} (6)
oop [T 2 ()] | cosn6

Here J,, denotes the n-th Bessel function, z,, and x;w the p-th root of the n-th
Bessel function and the p-te root of the first derivative of the n-th Bessel function,
respectively, n = 0,1,2,..., p =0,1,2,... . For the last term in (5) and (6) either

the upper or lower trigonometric function is used.

3 Interior Geometry of Circular Corrugated Horns

Basically, the radiated far field pattern of a horn is determined by the field distribu-
tion of the waves emitted from the aperture. On the other hand, the aperture field
distribution itself is uniquely determined by the excitation in the feeding wave guide

and by the interior geometry of the horn. Therefore, assuming a given excitation,
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the far field is mainly influenced by the design of the interior geometry of the horn.

Usually the horn is excited by the T'E;; mode, which is the fundamental, i.e.,
first solution of the wave equation in cylindrical coordinates. In order to obtain a
rotationally symmetric distribution of the energy density of the field in the horn
aperture, a quasi periodical corrugated wall structure according to Figure 1 is as-
sumed, cf. Wolf et al. [33], and Johnson and Jasik [14].

To reduce the number of optimization parameters, the horn geometry is described
by a set of envelope functions from which the actual geometric data for ridges and
slots can be derived.

Typically, a horn is subdivided into three sections, cf. Figure 2, consisting of
an input section, a conical section, and an aperture section. For the input and the
aperture section, the interior and outer shape of slots and ridges is approximated
by a 2nd-order polynomial, while a linear function is used to describe the conical
section. Is is assumed that the envelope functions of ridges and slots are parallel in
conical and aperture section.

By this simple analytical approach it is possible to approximate any reasonable

geometry with sufficient accuracy by the design parameters

Ta - aperture radius,

1 - length of input section,

Zeon - length of conical section,

Te - total horn length,

a - semi flare angle of conical section,
[, - width of slots,

ls - width of ridges,

t - depth of first slot in input section,
to - depth of slots in conical section,

which will become the variables of the optimization model.
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At the break points x; and x5, respectively, the envelope functions must be con-
tinuously differentiable, to achieve smooth transitions from one section to the other.
The corresponding formulae are easily derived from the assumptions mentioned, and

found in Hartwanger [12].

4 Computation of the Scattering Matrix

A circular corrugated horn has a modular structure, where each module consists
of a step transition between two circular wave guides with different diameters, see
Figure 1. First it is shown, how the amplitudes of waves, travelling towards and
away from the break point, can be coupled by a so-called scattering matrix. By
combining all modules of the horn step by step, the corresponding scattering matrix
describing the total transition of amplitudes from the entry point to the aperture
can be computed by successive matrix operations , see also Kiithn and Hombach [15],
Mittra [20] or Piefke [25]. To give an impression of the complexity of the evaluation
of the scattering matrix, the basic steps are repeated without trying to be complete.

From Maxwell’s equations it follows that the tangential electrical and magnetical
field components must be continuous at the interface between two wave guides. This
continuity condition is exploited to compute a relation between the mode amplitudes
of the excident bf, ;, b, ; and incident af, ;, af; ; waves in each wave guide of a module,
see Figure 3, k =1, 2.

Then voltage and current coefficients are defined by

k I k k k
Uiy = /% (“H,a + bH,J) ;
k o k k k
U; = /%L (aEJ + bE,j) ;
(7)
k o 1 k k
Iy = o (“H,a - bH,j) )
H,j

Ik . = = (ak - — bk )

E.j /—Zg,j E.j Ej) >

where Zlff,j is the j-th magnetic and zfg,j the j-th electric field impedance, k = 1, 2.

From the eigenfunctions the tangential fields in both areas are obtained, i.e.,
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j=1
k = 1,2, where the tangential field vectors in case of excitation by the T'Ej; mode
are computed from (5) and (6)
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Here Jy and J; denote the O-th and 1-st Bessel functions, x; and x'J the j-th root
of the 1-st Bessel function and the j-th root of the first derivative of the 1-st Bessel
function, respectively, where k = 1,2 and j =1,2,3,....

At the transition between the two wave guides the tangential fields must be
continuous. Moreover, boundary conditions must be satisfied, i.e., Fs = 0 for r; <

r < ry, leading to

Hy, = H : 0<r<r - (9)

Now only n; eigenwaves in region 1 and ny eigenwaves in region 2 are considered.
The electric field in area 1 is expanded subject to the eigenfunctions in area 2 and
the magnetic field in area 2 subject to the eigenfunctions in area 1. After some
manipulations, in particular interchanging integrals and finite sums, the following
relationship between voltage coefficients in region 1 and 2 can be formulated in

matrix notation:

U2 Xpp Xuw | | Uk
— . (10)
U% Xy Xuw Ul

Here Up, and U}, are vectors, consisting of the coefficients Uf, ; and Up; ; for

J

j=1,...,n, respectively, k = 1,2. The elements of the matrix Xgg are given by
xi, = [ [ T el did 1
EET |, eEi(paza ) eEj(pa z,0) p dpdp . (11)

In a similar way Xpyg, Xgm, and Xgg are defined. Moreover, very similar expressions

for the current coefficients are available,



4 COMPUTATION OF THE SCATTERING MATRIX 11

I7, Yer Yur I},
= : (12)

Iz Yen Yum I}
where I}, and Ij; are vectors, consisting of the coefficients Iy ; and Ij; ; for j =
1,...,ng, respectively, £k =1, 2.

Next the relationship between the mode amplitude vectors b% and b% of the
excident waves bf, ;, b ;, and af, and af; of the incident waves af, ;, af;, j =
1,...,n%, k = 1,2, are evaluated. Proceeding from (7) and (10), (12), and the
diagonal matrix

7y, = diag(z,’f;,l, . z,'f;,nk, z’fl,l, e z’flnk) , (13)

see (7), some auxiliary matrices are defined:

A = Z,—-XZYZ,*,

B = 2XZ,,

C = —Z,—XZ2YZ, ", (14)
D = —-Z2,YZy',

E = Z2,YZy'.

Here X and Y are the matrices, composed of Xgg, Xgg, Xgg, and Xgg, see (10),
and Yep, Yeu, Yy, and Yy, see (12), respectively.

Finally, the scattering matrix is obtained,

b, St Sz ay
- (15)
ba So1 Sa az
N——— — —

scattering matriz
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by
Sy = 1+EA'B,
S, = A'B,
Syy = D+ EA-(C,
Soy = ATC,

where 1 is the 2(n; + ny)-dimensional identity matrix.

The next step is to combine scattering matrices of successive modules. First (15)

is rewritten in the form

a Ty Tio a2

— (17)
by Tor Ty by

with
Ty = SuSy ,
Tie = Sia— 51155 S22,
(18)

Ty = Sy,
Toy = —S5'Ss .

In the same way, a transition matrix for the subsequent module is computed, say

a Ty Ty [ (19)

bl T21 T?Z b2

Since the input of the second module must coincide with the output of the first

one, i.e., @ = by and by = as, it follows that

ay Ty T Tor To [}
= ) (20)

bl T21 T22 Tll TIQ b2

A numerically more stable variant is proposed by Kiihn and Hombach [15], which

is also implemented for our numerical tests. By successive evaluation w.r.t. all horn
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modules under consideration, we compute the total scattering matrix relating the

amplitudes at the feed input with those at the aperture, i.e.,

* *
by 11 12 ai

* *
ba 21 22 a2

total scattering matriz

5 The Optimization Model

First one has to determine the mode spectrum at the aperture from the far field,
e.g. by the method of moments, see Hartwanger [12] for details. Proceeding from
a given mode spectrum at the aperture, the next step is to compute the interior
geometry of the horn to generate the required mode spectrum as closely as possible.

Optimization parameters are the geometric variables that determine the envelope

functions, see Section 3, i.e.

_ T
D= (raa X1y Teony La,y O lT‘) l87 tl) t2)

with
Ta - aperture radius,
x1 - length of input section,
Zeon - length of conical section,

Te - total horn length,

a - semi flare angle of conical section,
[, - width of slots,

ls - width of ridges,

t - depth of first slot in input section,

to - depth of slots in conical section.
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Some of these variables, especially the aperture radius, may be fixed during the opti-
mization process depending on additional technical requirements. Proceeding from
given initial values, the optimization algorithm approximates an optimal solution
subject to some given termination tolerances.

From the analytical equations that determine the envelope functions, the corre-
sponding diameters, widths of slots and ridges, etc. are determined, from which all
data, needed for the successive evaluation of the scattering matrix (21), are com-
puted. To illustrate the dependency of the scattering matrix from the geometric

variables, (21) is reformulated to

b (p) _ f(p) Sh(p) a1 (22)

ba(p) 51(p)  S%(p) as

total scattering matrix

The vector a; describes the amplitudes of the modes exciting the horn, i.e. the
T F{; mode in our case. Thus a; is the 2n;-dimensional unity vector. The vector
as is containing the amplitudes of the reflected modes at the horn aperture, known
from the evaluation of the far field. Thus, a simple matrix time vector computation
is performed to get the modes of reflected waves by (p) and by (p), once the scattering
matrix is known.

The main goal of the optimization procedure is to find an interior geometry p of
the horn so that the distances of by(p)’ from given amplitudes Eé forj=1,...,2n,
become as small as possible. The first component of the vector by (p) is a physically
significant parameter, the so-called return loss, representing the power, reflected at
the throat of the horn. Obviously, this return loss should be minimized as well. The
phase of the return loss and further components of b, (p) are not of interest.

From these considerations the least squares optimization problem

min ;%3 (b3(p) — 5%)2 +pby(p)” (23)

peIR": pp<p<py ,

is obtained. Here the upper index j denotes the j-th coefficient of the corresponding
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vector, u a suitable weight, and p;, p, lower and upper bounds for the parameters
to be optimized. Note also that complex numbers are evaluated throughout the
paper. To get an implementable optimization problem, one has to consider real and

imaginary part of objective function in (23) separately.

6 Solving Least Squares Problems

Besides of some very special cases, available optimization algorithms are unable to
exploit the special structure of a data fitting formulation, i.e., that the norm of
certain differences of a model function from given data points is to be minimized.

The popular Ly-norm leads to a least squares problem of the form

min 3 fi(p)?
(24)
peR": p <p<py ;

cf. (23). Now it is assumed that the parameter vector p is n-dimensional and
that all nonlinear functions are continuously differentiable with respect to p. Upper
and lower bounds are taken into account. Further linear or nonlinear equality and
inequality constraints can be included, but are omitted now to simplify the notation.
The assumption, that all problem functions must be smooth, is essential. The
efficient numerical algorithm under consideration are based more or less on the

Gauss-Newton method, that requires first derivatives. To understand their basic

structure, the notation
F(p) == (f1(p),- -, filp))"

is introduced for the objective function vector, also called the residual. Moreover,

let

Then
Vf(p)=VF(p)F(p) (25)
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defines the Jacobian of the objective function with

VF(]?) = (Vfl(p)v' : '7vfl(p)) :

If it is assumed now that the problem functions fi,..., f; are twice continuously

differentiable, the Hessian matrix of f is given by
Vi f(p) = VE(@)VE(p)" + Blp) . (26)

where
B(p) := Z: i)V filp) (27)

Proceeding from a given iterate py, Newton’s method can be applied to (24) to

get a search direction di € IR" by solving the linear system

V2 f(pr)d+ V f(pr) =0

or alternatively,
VF(p)VF(pr)"d + B(pr)d + VF(pi)F(p) =0 . (28)

Let us assume for a moment that

F@p*) = (fi("),..., ()" =0

at an optimal solution p*, i.e. that the residual F'(p) vanishes at p*. Then matrix
B(py) in (28) is neglected, cf. (27) for justification, and (28) defines the normal

equations of the linear least squares problem

min ||VE(pr)"d + F(py)| - (29)

deIR™

A new iterate is obtained by pgi1 := pr + aidy, where di is a solution of (29) and
where ay denotes a suitable steplength parameter. It is obvious that a quadratic
convergence rate is achieved when starting sufficiently close to an optimal solution.
The above calculation of a search direction is known as the Gauf}-Newton method
and represents the traditional way to solve nonlinear least squares problems, see

Bjorck [1] for more details.
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In general, the Gauss-Newton method possesses the attractive feature that it
converges quadratically to an optimal solution, although any second order infor-
mation is not provided. Important assumptions are, that the Jacobian matrix of F'
possesses full rank and is Lipschitz continuous in a neighbourhood of p*, and that the
starting point py of the Gauss-Newton method with steplength one are sufficiently
close to p*. However, these assumptions are very strong and cannot be satisfied in
real situations. There are problems with non-zero residuals, with rank-deficient Ja-
cobian matrices, with non-continuous derivatives, and with starting points far away
from a solution.

Especially difficulties arise when problems with a large residual are to be solved,
ie. if F(p*)"F(p*) is not sufficiently small relative e.g. to ||VF(p*)||. Numerous
proposals have been made in the past to deal with this situation, and it is outside
the scope of this paper to give a review on all possible attempts, developed in the
last 20 years. Only a few remarks are presented to illustrate basic features of the
main approaches, for further reviews see Gill, Murray, and Wright [10], Ramsin and
Wedin [26] or Dennis [5].

A very popular method is known under the name Levenberg-Marquardt algo-
rithm, see [16] and [19]. The key idea is to replace the Hessian in (28) by a multiple
of the identity matrix, say A\, with a suitable nonnegative factor ;. Obviously a

regular system of linear equations of the form
VF(p)VF(pe)"d+ Med + VF (pr) F(pe) = 0

follows. For the choice of A\, and the relationship to the so-called trust region meth-
ods, see e.g. Moré [22].

A more sophisticated idea is to replace B(py) in (28) by any quasi-Newton matrix
By, cf. e.g. Dennis [6]. But some additional safeguards are necessary to deal with
indefinite matrices VF (px)VF(pr)" + By in order to get a descent direction. A
modified algorithm was proposed by Gill and Murray [9], where By, is either equal
to B(pk), a second order approximation of B(py), or a quasi-Newton matrix. In

this case a diagonal matrix is added to VF(py)VF(pr)" + By to obtain a positive
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definite matrix. Lindstrém [17] proposed a combination of a GauB-Newton and a
Newton method by using a certain subspace minimization.

If however, the residual is too large, then there is no possibility to exploit the
special structure, and a general unconstrained minimization algorithm, e.g. a quasi-
Newton method, can be applied as well.

A lot of efficient special purpose computer programs are available to solve un-
constrained least squares problems, and there is no specific need to invent another
implementation. However, there exists a very simple approach to combine the valu-
able properties of Gauss-Newton methods with that of sequential quadratic pro-
gramming (SQP) algorithms in a very simple and straigthforward way with nearly
no additional efforts.

Since most nonlinear least squares problems are ill-conditioned, it is not recom-
mended to solve (24) directly by a general nonlinear programming method. But
a simple transformation of the original problem and its subsequent solution by an
SQP method retains typical features of a special purpose code and prevents the need
to take care of any negative eigenvalues of an approximated Hessian matrix. The
corresponding computer program can be implemented in a few lines, provided that
an SQP algorithm is available.

The transformation, also described in Schittkowski [28], is performed by intro-
ducing [ additional variables z = (z1,..., )" and [ additional equality constraints

of the form

Then the equivalent transformed problem is

(p,2) € B™: prpy — 2=, (31)
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We consider now (31) as a general nonlinear programming problem of the form

min f(p)
PER": 5(5) =0, (32
P <p<py

with 7 :=n+1, p:= (p,2), f(p) := 32"z, §(p) :== F(p) — 2, and apply the SQP
method.

By transforming the original problem into a general nonlinear programming prob-
lem in the proposed way, typical features of a Gauss-Newton and quasi-Newton least
squares method are retained, see Schittkowski [28] for details. The resulting opti-

mization problem can be solved e.g. by a standard sequential quadratic program-

ming code called NLPQL, cf. Schittkowski [27].

where By, € IR"*™ denotes a suitable positive definite approximation of B(p).
When starting the SQP method one could proceed from a user-provided initial

guess pg for the variables and define

2y = F(pO) )
el 0 (34)
BO = y
0o I

so that the initial point py is feasible. The choice of By is of the form (33) and allows
a user to provide some information on the estimated size of the residual, if available.
If he knew that the residual F(p*)” F(p*) is close to zero at the optimal solution p*,
he could choose a small € in (34). At least in the first iterates, the search directions
are very similar to the traditional GauB-Newton direction. Otherwise a user could

define € = 1, if a large residual is expected.
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7 Numerical Results

An existing real-life far field distribution is considered to illustrate the optimal design
of a circular corrugated horn as described in the preceding sections. In the first step,
the mode spectrum at the aperture is determined by the method of moments, see
Figure 4. An excellent agreement between the two far fields w.r.t. amplitude and
phase is observed. Until 60 degrees, the most important region for the design of the
antenna under consideration, both curves coincide more or less.

In a second step, the optimization strategy discussed before, is applied to com-
pute the interior geometry of the horn by approximating the known mode spectrum.
The least squares problem was solved by the technique outlined in the previous sec-
tion, see Schittkowski [28], where a solution of the constrained nonlinear program-
ming problem was obtained by the sequential quadratic programming code NLPQL
of Schittkowski [27].

The radius of the feeding wave guide, and the radius of the aperture are kept
constant, i.e., 7, = 11.28 mm and r, = 90.73 mm, where 37 ridges and slots are
assumed. Parameter names, initial values py, and optimal solution values p,,; are
listed in Table 7. The parameters differ slightly from those shown in Section 3 and
5, respectively. The number of modes, needed to calculate the scattering matrix,
is 70. Forward differences are used to evaluate numerical derivatives subject to a
tolerance of 1.077, and p = 1 was set for weighting the return loss.

The optimization code NLPQL produced the following output to inform about
the progress of the iteration cycle. The first column contains objective function val-
ues, that are identical to our least squares fitting criterion only if the corresponding
values for constraint violation vanish. The number of line search iterations and the
steplength are one when approaching the solution, indicating the ideal case for an
SQP method, i.e. convergence behaviour as expected from the theory. The last
column shows the decrease of the optimality criterion until termination tolerance
1.0 is reached, see Schittkowski [27] for a precise definition. For the last iterations

the convergence speed is faster than linear, but still slower than quadratic. This
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name Py Pop comment

T 50.0 111.85 length of input section

Zeon 50.0 0.00 - length of conical section

T, 50.0 47.00 - length of output section

« 28.0 29.00 - semi flare angle of conical section
q 0.25 0.20 - quotient of slot and ridge width
ty 12.5 11.97 - depth of first slot in input section
ty 7.2 7.82 - depth of slots in conical section

Table 1: Initial and optimal parameter values

superliner convergence speed is also verified by the available optimization theory
because of the so-called BFGS quasi-Newton updates of matrices approximating the
Langrangian function. Roundoff errors in evaluation of scattering matrices and, in
particular, approximation errors in gradient calculations prevent a more accurate

solution.

OUTPUT IN THE FOLLOWING ORDER:

IT - ITERATION NUMBER

F - OBJECTIVE FUNCTION VALUE

SCV - SUM OF CONSTRAINT VIOLATION

NA - NUMBER OF ACTIVE CONSTRAINTS

I - NUMBER OF LINE SEARCH ITERATIONS

ALPHA - STEPLENGTH PARAMETER
DELTA - ADDITIONAL VARIABLE TO PREVENT INCONSISTENCY
KT - KUHN-TUCKER OPTIMALITY CRITERION

IT F SCV NA I ALPHA DELTA KT

1 .16795478D+01 .00D+00 37 O .00D+00 .00D+00 .37D+00
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47
48
49
50
51

.14476536D+01
.11909891D+01
.85038794D+00
.31779869D+00
.11781251D+00
.55760883D-01

.17468205D-02
.17434926D-02
.17397940D-02
.17219966D-02
.17225078D-02

.57D+00
.68D+00
.80D+00
.42D+00
.24D+00
.25D+00

.18D-02
.52D-04
.40D-02
.35D-03
.53D-06

37
37
37
37
37
37

37
37
37
37
37

.10D+01
.10D+00
.10D+00
.10D+01
.10D+01
.10D+01

.10D+01
.10D+01
.10D+01
.10D+01
.10D+01

.00D+00
.00D+00
.00D+00
.00D+00
.00D+00
.00D+00

.00D+00
.00D+00
.00D+00
.00D+00
.00D+00

.31D+01
.43D+01
.91D+00
.32D+00
.12D+00
.25D-01

22

In Figure 5 the far field of the horn computed by the optimization algorithm and

the given far field can be compared. Obviously, the given one is approximated very

well with a cross polar value below —42.19 dB. The reflection loss is better than

30 dB, which is a satisfying value.

8 Conclusions

An efficient numerical approach to compute the optimal RF design of circular cor-

rugated horns useful for industrial application is presented. The interior geometric

structure of a horn is described by envelope functions, from which the actual di-

ameters, slot and ridge depths and widths etc. are derived. The scattering matrix,

relating the incident and excident modal field at horn throat and horn aperture is

computed for the actual geometry and the obtained mode spectrum is compared to

the objective mode spectrum.

procedure, using the variables of the geometrical envelope function as optimization

The resulting least squares problem is established and the numerical optimization

parameters, is outlined. Based on a real life far field, the practical feasibility of the

approach is shown.
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Figure 1: Cross sectional view of a circular corrugated horn
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Figure 2: Envelope functions of a circular corrugated horn
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Figure 4: Amplitude and phase of copolar of given far field in comparison to the

field excited by the computed aperture spectrum
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Figure 5: Comparison of far field of the optimised horn with the desired far field
(left: magnitude, right: phase)
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