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Abstract

Computer aided design optimization of corrugated horns became a pow-

erful tool to reduce development costs on the one hand and to improve per-

formance of space antennas on the other. In this paper the physical model

is outlined, based on Maxwell's equations, and it is shown, how a complete

numerical simulation of a circular corrugated horn can be achieved, assuming

that the interior geometry of the horn is known. In order to compute the elec-

tromagnetic properties of a horn, the so-called scattering matrix is assembled.

This matrix is needed to relate mode amplitudes of re
ected and transmitted

waves in horn sections with di�erent diameters. Envelope functions, deter-

mined by a few geometric design parameters, are used to describe the inner

geometry of a horn. These parameters are applied to formulate a least squares

optimization problem. As a starting point, an amplitude spectrum in the aper-

ture has to be determined which radiates a given far �eld. The di�erences of

those amplitudes and the amplitudes predicted by the model are to become

as small as possible by adapting the design variables. Moreover, the return

loss is to be minimized. The resulting least squares optimization problem can
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be solved by a standard sequential qudratic programming (SQP) code after a

suitable transformation into a nonlinear programming problem, by which typ-

ical features of Gauss-Newton methods are retained. Some numerical results

are included to show the successfull application of the introduced advance to

design a circular corrugated horn which radiates a given far �eld.

Keywords: Antenna design; corrugated horns; wave equation; least squares opti-

mization

1 Introduction

Corrugated horns are frequently used as re
ector feed sources for large space anten-

nas, e.g. for INTELSAT satellites, see Wolf et al. [33].

The goal is, to achieve a given spatial energy distribution of the radio frequency

(RF) waves, called the radiation or directional characteristic. The transmission

quality of the information, carried by the RF signals, is strongly determined by the

directional characteristic of the feeding horn, i.e. it's geometric structure.

Today, the experimental design of corrugated horns, based on a trial-and-error

approach, is replaced by a computer aided design, where the dynamic system is

modeled completely in a mathematically rigorous way, see K�uhn and Hombach [15]

for horns with ring-loaded radial slots, or Coccioli et al. [3], Clarricoats, Olver [2]

and Olver et al. [24], [23] for alternative horn types.

Another drastic improvement in the design process was achieved by applying

nonlinear programming techniques. Optimization variables describe completely the

interior horn geometry, e.g. length, aperture diameter, wave guide interface, mass,

slot width of corrugations, wall thickness, etc. They are iterated by an optimization

algorithmwith the intention to minimize return loss, cross-polar peak over a speci�ed

�eld of view, the copolar edge tapering at a speci�ed pattern angle, or some other

objectives, cf. e.g. Wolf et al. [33], Shee and Smith [29], or the paper of Gentili et

al. [8] with some additional information about software. Manufacturing and physical

constraints must be taken into account.
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The mathematical model is based on Maxwell's equations for electric and mag-

netic �elds, see e.g. Harrington [11]. Because of additional assumptions, e.g., ho-

mogeneous and isotropic media, rotational symmetry, and ideal conductivity, it is

possible to solve the wave equation analytically and to evaluate electric and magnetic

�elds in a wave guide by their eigenmodes forming a complete orthogonal system.

However, the model becomes more complex because of the continuous transition

between two neighbouring wave guides with di�erent cross sectional areas. The

relationship between re
ected and transmitted amplitudes in both wave guides is

described by a so-called scattering matrix, which has to be computed separately for

each horn module conjunction. By successive matrix multiplications, the scattering

matrix for the complete transition of the amplitudes at the horn entry and the

aperture can be evaluated.

Once the scattering matrix is computed, the sum of the squared di�erences be-

tween the actually computed wave amplitudes and the required ones is evaluated as

for the objective function to be minimized. Design parameters, needed for describ-

ing the interior horn geometry, are the optimization variables to be adapted in an

iterative way.

Least squares problems are solved iteratively by Gauss-Newton and related al-

gorithms, to exploit the special mathematical structure as much as possible and to

get eÆcient and reliable methods, see e.g. Bj�orck [1] or Dennis [5].

Because of the highly complex computations required for creating the scattering

matrix, the number of iterations must be as low as possible. Since the applied

numerical methods require �rst derivatives, it is necessary to approximate them

numerically by a forward di�erence formula, an additional burden for the numerical

complexity of the described approach.

One possibility to solve a least squares problem is, to transform it into a general

constrained nonlinear programming problem by introducing additional variables and

constraints, see Schittkowski [28], and to solve the modi�ed optimization problem

by a sequential quadratic programming (SQP) code, e.g., by NLPQL of Schitt-

kowski [27]. It can be shown that typical features of a Gauss-Newton method are
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retained and that the additional variables and constraints do not increase numerical

complexity. By combining the evaluation program for the scattering matrix and

the least squares optimization code, a powerful tool to solve the underlying design

problem is obtained.

Section 2 contains a brief outline of the underlying physical model equations,

i.e. Maxwell's equations and the resulting wave equations. The interior geometry

of a circular corrugated horn is described in Section 3, which is needed to formu-

late the design parameters of our model. The essential time consuming part of the

numerical model evaluation is the computation of the scattering matrix, by which

amplitudes of aperture modes and wave guide modes can be computed from the

given excitation. Corresponding formulas, obtained from continuous transmission

conditions, are found in Section 4. In Section 5 the least squares optimization prob-

lem is formulated and some numerical details giving insight into the computational

procedure, are presented. The iterative solution of least squares problems is based

on the Gauss-Newton method, which is described in Section 6. Moreover it is shown

how the least squares problem is transformed into a general nonlinear programming

problem to be solved by a standard SQP algorithm. Finally numerical results are

presented, obtained for an existing satellite horn, to validate the described method.

2 Physical Model Equations

In the following, a brief outline of the physical equations is given that are used to

model the electromagnetic �eld of horns. For more details see Jackson [13], Mittra

and Lee [21] or Zuhrt [34]. It is assumed, that a circular wave guide with constant

diameter is given.

The electromagnetic �eld theory is based on Maxwell's equations, i.e., four dif-

ferential equations relating the electrical �eld E, the magnetic �eld H, the electrical

displacement D, and the magnetic induction B to electrical charge density � and

current density J , see e.g. Collin [4] or Silver [30]. In a general form these equations
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are

r�H = J + @
@t
D ;

r� E = � @
@t
B ;

r �B = 0 ;

r �D = �

(1)

with the material conditions

D = �0�rE ;

B = �0�rH ;

(2)

with �0, the dielectric constant, �r, the relative dielectric constant, �0 the perme-

ability and �r, the relative permeability.

Under some basic assumptions, e.g., homogenous and isotropic media, Maxwell's

equations can be transformed into an equivalent system of two coupled equations.

They have the form of a wave equation , i.e.,

r2	� c2
@2

@t2
	 = �f(x; t)

with displacement f(x; t) enforcing the wave, and wave velocity c. x is the space

variable, and 	 is to be replaced respectively either by E or H.

For circular horns with rotational symmetry, the usage of cylindrical coordinates

(�; �; z) is advantageous, especially since only waves propagating in z direction do

occur. Thus the scalar wave equation in cylindrical coordinates is given by
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The constant k is known as the propagation constant, which is related to the wave

length � by k = 2�
�
.

By separation of variables the general solution

	 =

�
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k2 � k2z�

�
+ c2N�

�q
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��
�
c3 cos ��+ c4 sin ��
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c5e

�ikzz + c6e
ikzz

�
, (4)



3 INTERIOR GEOMETRY OF CIRCULAR CORRUGATED HORNS 6

is obtained with cylindrical Bessel and Neumann functions J� andN�, � = 1; : : : ; 6,and

some arbitrary coeÆcients cj, j = 1; : : : ; 6, see e.g. Collin [4], Waldron [32] or

Unger [31] for more details.

Further assuming that the surface of the wave guide has ideal conductivity, Diri-

clet boundary conditions 	 = 0 for 	 = E and Neumann boundary conditions

@	
@n

= 0 for 	 = H (n expressing the normal vector to the surface) at the surface,

yield the eigenmodes or eigenwaves for the circular wave guide. For the numerical

analysis it is essential to understand that the eigenmodes of the wave guide form a

complete orthogonal system. As a consequence any electromagnetic �eld distribu-

tion in a circular wave guide can be expanded into a in�nite series of eigenfunctions,

see Unger [31], Waldron [32]. Therefore, the electromagnetic �eld in the wave guide

is completely described by the amplitudes of the modes.

For the discussed problem only the transversal eigenfunctions of the wave guides

need to be considered. The eigenfunctions of the circular wave guide are given in

the form

TH
np =

vuut 2� Æn0

(x
0

np
2 � n2)�

Jn(x
0

np
�
z
)���Jn(x0

np)
���
(
sinn�

cosn�

)
; (5)

TE
np =

s
2� Æn0

�

Jn(xnp
�
z
)

xnp jJn�1(xnp)j

(
sinn�

cosn�

)
. (6)

Here Jn denotes the n-th Bessel function, xnp and x
0

np the p-th root of the n-th

Bessel function and the p-te root of the �rst derivative of the n-th Bessel function,

respectively, n = 0; 1; 2; . . . , p = 0; 1; 2; . . . . For the last term in (5) and (6) either

the upper or lower trigonometric function is used.

3 Interior Geometry of Circular Corrugated Horns

Basically, the radiated far �eld pattern of a horn is determined by the �eld distribu-

tion of the waves emitted from the aperture. On the other hand, the aperture �eld

distribution itself is uniquely determined by the excitation in the feeding wave guide

and by the interior geometry of the horn. Therefore, assuming a given excitation,



3 INTERIOR GEOMETRY OF CIRCULAR CORRUGATED HORNS 7

the far �eld is mainly in
uenced by the design of the interior geometry of the horn.

Usually the horn is excited by the TE11 mode, which is the fundamental, i.e.,

�rst solution of the wave equation in cylindrical coordinates. In order to obtain a

rotationally symmetric distribution of the energy density of the �eld in the horn

aperture, a quasi periodical corrugated wall structure according to Figure 1 is as-

sumed, cf. Wolf et al. [33], and Johnson and Jasik [14].

To reduce the number of optimization parameters, the horn geometry is described

by a set of envelope functions from which the actual geometric data for ridges and

slots can be derived.

Typically, a horn is subdivided into three sections, cf. Figure 2, consisting of

an input section, a conical section, and an aperture section. For the input and the

aperture section, the interior and outer shape of slots and ridges is approximated

by a 2nd-order polynomial, while a linear function is used to describe the conical

section. Is is assumed that the envelope functions of ridges and slots are parallel in

conical and aperture section.

By this simple analytical approach it is possible to approximate any reasonable

geometry with suÆcient accuracy by the design parameters

ra - aperture radius,

x1 - length of input section,

xcon - length of conical section,

xa - total horn length,

� - semi 
are angle of conical section,

lr - width of slots,

ls - width of ridges,

t1 - depth of �rst slot in input section,

t2 - depth of slots in conical section,

which will become the variables of the optimization model.
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At the break points x1 and x2, respectively, the envelope functions must be con-

tinuously di�erentiable, to achieve smooth transitions from one section to the other.

The corresponding formulae are easily derived from the assumptions mentioned, and

found in Hartwanger [12].

4 Computation of the Scattering Matrix

A circular corrugated horn has a modular structure, where each module consists

of a step transition between two circular wave guides with di�erent diameters, see

Figure 1. First it is shown, how the amplitudes of waves, travelling towards and

away from the break point, can be coupled by a so-called scattering matrix. By

combining all modules of the horn step by step, the corresponding scattering matrix

describing the total transition of amplitudes from the entry point to the aperture

can be computed by successive matrix operations , see also K�uhn and Hombach [15],

Mittra [20] or Piefke [25]. To give an impression of the complexity of the evaluation

of the scattering matrix, the basic steps are repeated without trying to be complete.

From Maxwell's equations it follows that the tangential electrical and magnetical

�eld components must be continuous at the interface between two wave guides. This

continuity condition is exploited to compute a relation between the mode amplitudes

of the excident bkE;j, b
k
H;j and incident a

k
E;j, a

k
H;j waves in each wave guide of a module,

see Figure 3, k = 1; 2.

Then voltage and current coeÆcients are de�ned by

Uk
H;j :=

q
zkH;j

�
akH;j + bkH;j

�
;

Uk
E;j :=

q
zkE;j

�
akE;j + bkE;j

�
;

IkH;j := 1p
zk
H;j

�
akH;j � bkH;j

�
;

IkE;j := 1p
zk
E;j

�
akE;j � bkE;j

�
;

(7)

where zkH;j is the j-th magnetic and zkE;j the j-th electric �eld impedance, k = 1; 2.

From the eigenfunctions the tangential �elds in both areas are obtained, i.e.,
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Ek =
1X
j=1

�
Uk
H;je

k
H;j + Uk

E;je
k
E;j

�
;

Hk =
1X
j=1

�
IkH;jh

k
H;j + IkE;jh

k
E;j

�
;

k = 1; 2, where the tangential �eld vectors in case of excitation by the TE11 mode

are computed from (5) and (6)

ekH;j(�; z; �) =

0
BBBBBBBBBB@

�1
�

r
2

(x
0

j
�1)�

J1(x
0

j
�=z)

jJ1(x
0

j
)j
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r
2

(x
0

j
�1)�

J
0

1
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0

j
�=z)

jJ1(x
0

j
)j

x
0

j

z
sin�

0

1
CCCCCCCCCCA

;

hkH;j(�; z; �) =

0
BBBBBBBBBB@

�
r

2

(x
0

j
�1)�

J
0

1
(x

0

j
�=z)

jJ1(x
0

j
)j

x
0

j

z
sin�

�1
�

r
2

(x
0

j
�1)�

J1(x
0

j
�=z)

jJ1(x
0

j
)j
cos�

0

1
CCCCCCCCCCA

;

ekE;j(�; z; �) =

0
BBBBBBBBBB@

�
q

2
�

J
0

1
(xj�=z)

xj jJ0(xj)j

xj
z
cos�

1
�

q
2
�

J1(xj�=z)

xj jJ0(xj)j
sin�

0

1
CCCCCCCCCCA

;

hkE;j(�; z; �) =

0
BBBBBBBBBB@

�1
�

q
2
�

J1(xj�=z)

xj jJ0(xj)j
sin�

�
q

2
�

J
0

1
(xj�=z)

xj jJ0(xj)j

xj
z
cos �

0

1
CCCCCCCCCCA

:
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Here J0 and J1 denote the 0-th and 1-st Bessel functions, xj and x
0

j the j-th root

of the 1-st Bessel function and the j-th root of the �rst derivative of the 1-st Bessel

function, respectively, where k = 1; 2 and j = 1; 2; 3; . . . .

At the transition between the two wave guides the tangential �elds must be

continuous. Moreover, boundary conditions must be satis�ed, i.e., E2 = 0 for r1 �
r � r2, leading to

E2 =

8>>><
>>>:

E1 : 0 � r � r1

0 : r1 < r � r2

(8)

H2 = H1 : 0 � r � r1 . (9)

Now only n1 eigenwaves in region 1 and n2 eigenwaves in region 2 are considered.

The electric �eld in area 1 is expanded subject to the eigenfunctions in area 2 and

the magnetic �eld in area 2 subject to the eigenfunctions in area 1. After some

manipulations, in particular interchanging integrals and �nite sums, the following

relationship between voltage coeÆcients in region 1 and 2 can be formulated in

matrix notation:

0
BBB@

U2
E

U2
H

1
CCCA =

0
BBB@

XEE XHE

XEH XHH

1
CCCA
0
BBB@

U1
E

U1
H

1
CCCA : (10)

Here Uk
E and Uk

H are vectors, consisting of the coeÆcients Uk
E;j and Uk

H;j for

j = 1; : : : ; nk, respectively, k = 1; 2. The elements of the matrix XEE are given by

X
ij
EE =

Z r2

0

Z 2�

0
e2Ei

(�; z; �)T e1Ej
(�; z; �) � d�d� : (11)

In a similar wayXHE, XEH, andXEE are de�ned. Moreover, very similar expressions

for the current coeÆcients are available,
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0
BBB@

I2E

I2H

1
CCCA =

0
BBB@

YEE YHE

YEH YHH

1
CCCA
0
BBB@

I1E

I1H

1
CCCA ; (12)

where IkE and IkH are vectors, consisting of the coeÆcients IkE;j and IkH;j for j =

1; : : : ; nk, respectively, k = 1; 2.

Next the relationship between the mode amplitude vectors bkE and bkH of the

excident waves bkE;j, b
k
H;j, and akE and akH of the incident waves akE;j, a

k
H;j, j =

1; : : : ; nk, k = 1; 2, are evaluated. Proceeding from (7) and (10), (12), and the

diagonal matrix

Zk = diag(zkE;1; : : : ; z
k
E;nk

; zkH;1; : : : ; z
k
H;nk

) ; (13)

see (7), some auxiliary matrices are de�ned:

A = Z2 �XZ2
1Y Z

�1
2 ;

B = 2XZ1 ;

C = �Z2 �XZ2
1Y Z

�1
2 ;

D = �Z1Y Z
�1
2 ;

E = Z1Y Z
�1
2 :

(14)

Here X and Y are the matrices, composed of XEE, XEH , XHE, and XHH , see (10),

and YEE, YEH, YHE, and YHH , see (12), respectively.

Finally, the scattering matrix is obtained,

0
BBB@

b1

b2

1
CCCA =

0
BBB@

S11 S12

S21 S22

1
CCCA

| {z }
scatteringmatrix

0
BBB@

a1

a2

1
CCCA (15)
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by

S11 = 1 + EA�1B ;

S12 = A�1B ;

S21 = D + EA�1C ;

S22 = A�1C ;

(16)

where 1 is the 2(n1 + n2)-dimensional identity matrix.

The next step is to combine scattering matrices of successive modules. First (15)

is rewritten in the form 0
BBB@

a1

b1

1
CCCA =

0
BBB@

T11 T12

T21 T22

1
CCCA
0
BBB@

a2

b2

1
CCCA (17)

with

T11 = S11S
�1
21 ;

T12 = S12 � S11S
�1
21 S22 ;

T21 = S�121 ;

T22 = �S�121 S22 :

(18)

In the same way, a transition matrix for the subsequent module is computed, say

0
BBB@

a1

b1

1
CCCA =

0
BBB@

T 11 T 12

T 21 T 22

1
CCCA
0
BBB@

a2

b2

1
CCCA : (19)

Since the input of the second module must coincide with the output of the �rst

one, i.e., a1 = b2 and b1 = a2, it follows that

0
BBB@

a1

b1

1
CCCA =

0
BBB@

T11 T12

T21 T22

1
CCCA
0
BBB@

T 21 T 22

T 11 T 12

1
CCCA
0
BBB@

a2

b2

1
CCCA : (20)

A numerically more stable variant is proposed by K�uhn and Hombach [15], which

is also implemented for our numerical tests. By successive evaluation w.r.t. all horn



5 THE OPTIMIZATION MODEL 13

modules under consideration, we compute the total scattering matrix relating the

amplitudes at the feed input with those at the aperture, i.e.,

0
BBB@

b1

b2

1
CCCA =

0
BBB@

S?
11 S?

12

S?
21 S?

22

1
CCCA

| {z }
total scatteringmatrix

0
BBB@

a1

a2

1
CCCA : (21)

5 The Optimization Model

First one has to determine the mode spectrum at the aperture from the far �eld,

e.g. by the method of moments, see Hartwanger [12] for details. Proceeding from

a given mode spectrum at the aperture, the next step is to compute the interior

geometry of the horn to generate the required mode spectrum as closely as possible.

Optimization parameters are the geometric variables that determine the envelope

functions, see Section 3, i.e.

p = (ra; x1; xcon; xa; �; lr; ls; t1; t2)
T

with

ra - aperture radius,

x1 - length of input section,

xcon - length of conical section,

xa - total horn length,

� - semi 
are angle of conical section,

lr - width of slots,

ls - width of ridges,

t1 - depth of �rst slot in input section,

t2 - depth of slots in conical section.
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Some of these variables, especially the aperture radius, may be �xed during the opti-

mization process depending on additional technical requirements. Proceeding from

given initial values, the optimization algorithm approximates an optimal solution

subject to some given termination tolerances.

From the analytical equations that determine the envelope functions, the corre-

sponding diameters, widths of slots and ridges, etc. are determined, from which all

data, needed for the successive evaluation of the scattering matrix (21), are com-

puted. To illustrate the dependency of the scattering matrix from the geometric

variables, (21) is reformulated to

0
BBB@

b1(p)

b2(p)

1
CCCA =

0
BBB@

S?
11(p) S?

12(p)

S?
21(p) S?

22(p)

1
CCCA

| {z }
total scatteringmatrix

0
BBB@

a1

a2

1
CCCA : (22)

The vector a1 describes the amplitudes of the modes exciting the horn, i.e. the

TE11 mode in our case. Thus a1 is the 2n1-dimensional unity vector. The vector

a2 is containing the amplitudes of the re
ected modes at the horn aperture, known

from the evaluation of the far �eld. Thus, a simple matrix time vector computation

is performed to get the modes of re
ected waves b1(p) and b2(p), once the scattering

matrix is known.

The main goal of the optimization procedure is to �nd an interior geometry p of

the horn so that the distances of b2(p)
j from given amplitudes b

j

2 for j = 1; : : : ; 2n2

become as small as possible. The �rst component of the vector b1(p) is a physically

signi�cant parameter, the so-called return loss, representing the power, re
ected at

the throat of the horn. Obviously, this return loss should be minimized as well. The

phase of the return loss and further components of b1(p) are not of interest.

From these considerations the least squares optimization problem

min
P2n2

j=1 (b
j
2(p)� b

j

2)
2 + � b11(p)

2

p 2 IRn : pl � p � pu ;

(23)

is obtained. Here the upper index j denotes the j-th coeÆcient of the corresponding
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vector, � a suitable weight, and pl, pu lower and upper bounds for the parameters

to be optimized. Note also that complex numbers are evaluated throughout the

paper. To get an implementable optimization problem, one has to consider real and

imaginary part of objective function in (23) separately.

6 Solving Least Squares Problems

Besides of some very special cases, available optimization algorithms are unable to

exploit the special structure of a data �tting formulation, i.e., that the norm of

certain di�erences of a model function from given data points is to be minimized.

The popular L2-norm leads to a least squares problem of the form

min
Pl

i=1 fi(p)
2

p 2 IRn : pl � p � pu ;

(24)

cf. (23). Now it is assumed that the parameter vector p is n-dimensional and

that all nonlinear functions are continuously di�erentiable with respect to p. Upper

and lower bounds are taken into account. Further linear or nonlinear equality and

inequality constraints can be included, but are omitted now to simplify the notation.

The assumption, that all problem functions must be smooth, is essential. The

eÆcient numerical algorithm under consideration are based more or less on the

Gauss-Newton method, that requires �rst derivatives. To understand their basic

structure, the notation

F (p) := (f1(p); : : : ; fl(p))
T

is introduced for the objective function vector, also called the residual. Moreover,

let

f(p) :=
1

2

lX
i=1

fi(p)
2 :

Then

rf(p) = rF (p)F (p) (25)
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de�nes the Jacobian of the objective function with

rF (p) = (rf1(p); : : : ;rfl(p)) :

If it is assumed now that the problem functions f1; : : : ; fl are twice continuously

di�erentiable, the Hessian matrix of f is given by

r2f(p) = rF (p)rF (p)T +B(p) ; (26)

where

B(p) :=
lX

i=1

fi(p)r2fi(p) : (27)

Proceeding from a given iterate pk, Newton's method can be applied to (24) to

get a search direction dk 2 IRn by solving the linear system

r2f(pk)d+rf(pk) = 0

or alternatively,

rF (pk)rF (pk)Td+B(pk)d+rF (pk)F (pk) = 0 : (28)

Let us assume for a moment that

F (p?) = (f1(p
?); : : : ; fl(p

?))T = 0

at an optimal solution p?, i.e. that the residual F (p) vanishes at p?. Then matrix

B(pk) in (28) is neglected, cf. (27) for justi�cation, and (28) de�nes the normal

equations of the linear least squares problem

min
d2IRn

krF (pk)Td+ F (pk)k : (29)

A new iterate is obtained by pk+1 := pk + �kdk, where dk is a solution of (29) and

where �k denotes a suitable steplength parameter. It is obvious that a quadratic

convergence rate is achieved when starting suÆciently close to an optimal solution.

The above calculation of a search direction is known as the Gau�-Newton method

and represents the traditional way to solve nonlinear least squares problems, see

Bj�orck [1] for more details.



6 SOLVING LEAST SQUARES PROBLEMS 17

In general, the Gauss-Newton method possesses the attractive feature that it

converges quadratically to an optimal solution, although any second order infor-

mation is not provided. Important assumptions are, that the Jacobian matrix of F

possesses full rank and is Lipschitz continuous in a neighbourhood of p?, and that the

starting point p0 of the Gauss-Newton method with steplength one are suÆciently

close to p?. However, these assumptions are very strong and cannot be satis�ed in

real situations. There are problems with non-zero residuals, with rank-de�cient Ja-

cobian matrices, with non-continuous derivatives, and with starting points far away

from a solution.

Especially diÆculties arise when problems with a large residual are to be solved,

i.e. if F (p?)TF (p?) is not suÆciently small relative e.g. to krF (p?)k. Numerous

proposals have been made in the past to deal with this situation, and it is outside

the scope of this paper to give a review on all possible attempts, developed in the

last 20 years. Only a few remarks are presented to illustrate basic features of the

main approaches, for further reviews see Gill, Murray, and Wright [10], Ramsin and

Wedin [26] or Dennis [5].

A very popular method is known under the name Levenberg-Marquardt algo-

rithm, see [16] and [19]. The key idea is to replace the Hessian in (28) by a multiple

of the identity matrix, say �kI, with a suitable nonnegative factor �k. Obviously a

regular system of linear equations of the form

rF (pk)rF (pk)Td+ �kd+rF (pk)F (pk) = 0

follows. For the choice of �k and the relationship to the so-called trust region meth-

ods, see e.g. Mor�e [22].

A more sophisticated idea is to replace B(pk) in (28) by any quasi-Newton matrix

Bk, cf. e.g. Dennis [6]. But some additional safeguards are necessary to deal with

inde�nite matrices rF (pk)rF (pk)T + Bk in order to get a descent direction. A

modi�ed algorithm was proposed by Gill and Murray [9], where Bk is either equal

to B(pk), a second order approximation of B(pk), or a quasi-Newton matrix. In

this case a diagonal matrix is added to rF (pk)rF (pk)T + Bk to obtain a positive
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de�nite matrix. Lindstr�om [17] proposed a combination of a Gau�-Newton and a

Newton method by using a certain subspace minimization.

If however, the residual is too large, then there is no possibility to exploit the

special structure, and a general unconstrained minimization algorithm, e.g. a quasi-

Newton method, can be applied as well.

A lot of eÆcient special purpose computer programs are available to solve un-

constrained least squares problems, and there is no speci�c need to invent another

implementation. However, there exists a very simple approach to combine the valu-

able properties of Gauss-Newton methods with that of sequential quadratic pro-

gramming (SQP) algorithms in a very simple and straigthforward way with nearly

no additional e�orts.

Since most nonlinear least squares problems are ill-conditioned, it is not recom-

mended to solve (24) directly by a general nonlinear programming method. But

a simple transformation of the original problem and its subsequent solution by an

SQP method retains typical features of a special purpose code and prevents the need

to take care of any negative eigenvalues of an approximated Hessian matrix. The

corresponding computer program can be implemented in a few lines, provided that

an SQP algorithm is available.

The transformation, also described in Schittkowski [28], is performed by intro-

ducing l additional variables z = (z1; : : : ; zl)
T and l additional equality constraints

of the form

fi(p)� zi = 0; i = 1; : : : ; l : (30)

Then the equivalent transformed problem is

(p; z) 2 IRn+l :

min 1
2
zT z

F (p)� z = 0 ;

pl � p � pu :

(31)
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We consider now (31) as a general nonlinear programming problem of the form

�p 2 IR�n :

min �f(�p)

�g(�p) = 0 ;

pl � p � pu

(32)

with �n := n + l, �p := (p; z), �f(�p) := 1
2
zT z, �g(�p) := F (p) � z, and apply the SQP

method.

By transforming the original problem into a general nonlinear programming prob-

lem in the proposed way, typical features of a Gauss-Newton and quasi-Newton least

squares method are retained, see Schittkowski [28] for details. The resulting opti-

mization problem can be solved e.g. by a standard sequential quadratic program-

ming code called NLPQL, cf. Schittkowski [27].

�Bk :=

0
BBB@

Bk 0

0 I

1
CCCA (33)

where Bk 2 IRn�n denotes a suitable positive de�nite approximation of B(p).

When starting the SQP method one could proceed from a user-provided initial

guess p0 for the variables and de�ne

z0 := F (p0) ;

B0 :=

0
BBB@

�I 0

0 I

1
CCCA ;

(34)

so that the initial point �p0 is feasible. The choice of B0 is of the form (33) and allows

a user to provide some information on the estimated size of the residual, if available.

If he knew that the residual F (p?)TF (p?) is close to zero at the optimal solution p?,

he could choose a small � in (34). At least in the �rst iterates, the search directions

are very similar to the traditional Gau�-Newton direction. Otherwise a user could

de�ne � = 1, if a large residual is expected.
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7 Numerical Results

An existing real-life far �eld distribution is considered to illustrate the optimal design

of a circular corrugated horn as described in the preceding sections. In the �rst step,

the mode spectrum at the aperture is determined by the method of moments, see

Figure 4. An excellent agreement between the two far �elds w.r.t. amplitude and

phase is observed. Until 60 degrees, the most important region for the design of the

antenna under consideration, both curves coincide more or less.

In a second step, the optimization strategy discussed before, is applied to com-

pute the interior geometry of the horn by approximating the known mode spectrum.

The least squares problem was solved by the technique outlined in the previous sec-

tion, see Schittkowski [28], where a solution of the constrained nonlinear program-

ming problem was obtained by the sequential quadratic programming code NLPQL

of Schittkowski [27].

The radius of the feeding wave guide, and the radius of the aperture are kept

constant, i.e., rg = 11:28 mm and ra = 90:73 mm, where 37 ridges and slots are

assumed. Parameter names, initial values p0, and optimal solution values popt are

listed in Table 7. The parameters di�er slightly from those shown in Section 3 and

5, respectively. The number of modes, needed to calculate the scattering matrix,

is 70. Forward di�erences are used to evaluate numerical derivatives subject to a

tolerance of 1:0�7, and � = 1 was set for weighting the return loss.

The optimization code NLPQL produced the following output to inform about

the progress of the iteration cycle. The �rst column contains objective function val-

ues, that are identical to our least squares �tting criterion only if the corresponding

values for constraint violation vanish. The number of line search iterations and the

steplength are one when approaching the solution, indicating the ideal case for an

SQP method, i.e. convergence behaviour as expected from the theory. The last

column shows the decrease of the optimality criterion until termination tolerance

1:0�7 is reached, see Schittkowski [27] for a precise de�nition. For the last iterations

the convergence speed is faster than linear, but still slower than quadratic. This
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name pi0 piopt comment

x1 50.0 111.85 - length of input section

xcon 50.0 0.00 - length of conical section

xo 50.0 47.00 - length of output section

� 28.0 29.00 - semi 
are angle of conical section

q 0.25 0.20 - quotient of slot and ridge width

t1 12.5 11.97 - depth of �rst slot in input section

t2 7.2 7.82 - depth of slots in conical section

Table 1: Initial and optimal parameter values

superliner convergence speed is also veri�ed by the available optimization theory

because of the so-called BFGS quasi-Newton updates of matrices approximating the

Langrangian function. Roundo� errors in evaluation of scattering matrices and, in

particular, approximation errors in gradient calculations prevent a more accurate

solution.

OUTPUT IN THE FOLLOWING ORDER:

IT - ITERATION NUMBER

F - OBJECTIVE FUNCTION VALUE

SCV - SUM OF CONSTRAINT VIOLATION

NA - NUMBER OF ACTIVE CONSTRAINTS

I - NUMBER OF LINE SEARCH ITERATIONS

ALPHA - STEPLENGTH PARAMETER

DELTA - ADDITIONAL VARIABLE TO PREVENT INCONSISTENCY

KT - KUHN-TUCKER OPTIMALITY CRITERION

IT F SCV NA I ALPHA DELTA KT

-----------------------------------------------------------------

1 .16795478D+01 .00D+00 37 0 .00D+00 .00D+00 .37D+00



8 CONCLUSIONS 22

2 .14476536D+01 .57D+00 37 1 .10D+01 .00D+00 .31D+01

3 .11909891D+01 .68D+00 37 2 .10D+00 .00D+00 .43D+01

4 .85038794D+00 .80D+00 37 2 .10D+00 .00D+00 .91D+00

5 .31779869D+00 .42D+00 37 1 .10D+01 .00D+00 .32D+00

6 .11781251D+00 .24D+00 37 1 .10D+01 .00D+00 .12D+00

7 .55760883D-01 .25D+00 37 1 .10D+01 .00D+00 .25D-01

.. ..... .... .. . ....... ........ .....

.. ..... .... .. . ....... ........ .....

47 .17468205D-02 .18D-02 37 1 .10D+01 .00D+00 .15D-04

48 .17434926D-02 .52D-04 37 1 .10D+01 .00D+00 .53D-05

49 .17397940D-02 .40D-02 37 1 .10D+01 .00D+00 .44D-04

50 .17219966D-02 .35D-03 37 1 .10D+01 .00D+00 .22D-05

51 .17225078D-02 .53D-06 37 1 .10D+01 .00D+00 .13D-07

In Figure 5 the far �eld of the horn computed by the optimization algorithm and

the given far �eld can be compared. Obviously, the given one is approximated very

well with a cross polar value below �42:19 dB. The re
ection loss is better than

30 dB, which is a satisfying value.

8 Conclusions

An eÆcient numerical approach to compute the optimal RF design of circular cor-

rugated horns useful for industrial application is presented. The interior geometric

structure of a horn is described by envelope functions, from which the actual di-

ameters, slot and ridge depths and widths etc. are derived. The scattering matrix,

relating the incident and excident modal �eld at horn throat and horn aperture is

computed for the actual geometry and the obtained mode spectrum is compared to

the objective mode spectrum.

The resulting least squares problem is established and the numerical optimization

procedure, using the variables of the geometrical envelope function as optimization

parameters, is outlined. Based on a real life far �eld, the practical feasibility of the

approach is shown.
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Figure 1: Cross sectional view of a circular corrugated horn

Figure 2: Envelope functions of a circular corrugated horn
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Figure 3: Cross sectional view of one module

Figure 4: Amplitude and phase of copolar of given far �eld in comparison to the

�eld excited by the computed aperture spectrum
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Figure 5: Comparison of far �eld of the optimised horn with the desired far �eld

(left: magnitude, right: phase)
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